Documentation

Mathlib.Algebra.Order.Group.Opposite

Order instances for MulOpposite/AddOpposite #

This files transfers order instances and ordered monoid/group instances from α to αᵐᵒᵖ and αᵃᵒᵖ.

Equations
    Equations
      @[simp]
      theorem MulOpposite.unop_le_unop {α : Type u_1} [Preorder α] {a b : αᵐᵒᵖ} :
      unop a unop b a b
      @[simp]
      theorem AddOpposite.unop_le_unop {α : Type u_1} [Preorder α] {a b : αᵃᵒᵖ} :
      unop a unop b a b
      @[simp]
      theorem MulOpposite.op_le_op {α : Type u_1} [Preorder α] {a b : α} :
      op a op b a b
      @[simp]
      theorem AddOpposite.op_le_op {α : Type u_1} [Preorder α] {a b : α} :
      op a op b a b
      @[simp]
      theorem MulOpposite.unop_le_one {α : Type u_1} [CommMonoid α] [PartialOrder α] {a : αᵐᵒᵖ} :
      unop a 1 a 1
      @[simp]
      theorem AddOpposite.unop_nonpos {α : Type u_1} [AddCommMonoid α] [PartialOrder α] {a : αᵃᵒᵖ} :
      unop a 0 a 0
      @[simp]
      theorem MulOpposite.one_le_unop {α : Type u_1} [CommMonoid α] [PartialOrder α] {a : αᵐᵒᵖ} :
      1 unop a 1 a
      @[simp]
      theorem AddOpposite.nonneg_unop {α : Type u_1} [AddCommMonoid α] [PartialOrder α] {a : αᵃᵒᵖ} :
      0 unop a 0 a
      @[simp]
      theorem MulOpposite.op_le_one {α : Type u_1} [CommMonoid α] [PartialOrder α] {a : α} :
      op a 1 a 1
      @[simp]
      theorem AddOpposite.op_nonpos {α : Type u_1} [AddCommMonoid α] [PartialOrder α] {a : α} :
      op a 0 a 0
      @[simp]
      theorem MulOpposite.one_le_op {α : Type u_1} [CommMonoid α] [PartialOrder α] {a : α} :
      1 op a 1 a
      @[simp]
      theorem AddOpposite.nonneg_op {α : Type u_1} [AddCommMonoid α] [PartialOrder α] {a : α} :
      0 op a 0 a
      @[simp]
      theorem MulOpposite.unop_nonpos {α : Type u_1} [AddCommMonoid α] [PartialOrder α] {a : αᵐᵒᵖ} :
      unop a 0 a 0
      @[simp]
      theorem MulOpposite.unop_nonneg {α : Type u_1} [AddCommMonoid α] [PartialOrder α] {a : αᵐᵒᵖ} :
      0 unop a 0 a
      @[simp]
      theorem MulOpposite.op_nonpos {α : Type u_1} [AddCommMonoid α] [PartialOrder α] {a : α} :
      op a 0 a 0
      @[simp]
      theorem MulOpposite.op_nonneg {α : Type u_1} [AddCommMonoid α] [PartialOrder α] {a : α} :
      0 op a 0 a
      @[simp]
      theorem AddOpposite.unop_le_one {α : Type u_1} [CommMonoid α] [PartialOrder α] {a : αᵃᵒᵖ} :
      unop a 1 a 1
      @[simp]
      theorem AddOpposite.one_le_unop {α : Type u_1} [CommMonoid α] [PartialOrder α] {a : αᵃᵒᵖ} :
      1 unop a 1 a
      @[simp]
      theorem AddOpposite.op_le_one {α : Type u_1} [CommMonoid α] [PartialOrder α] {a : α} :
      op a 1 a 1
      @[simp]
      theorem AddOpposite.one_le_op {α : Type u_1} [CommMonoid α] [PartialOrder α] {a : α} :
      1 op a 1 a