Group structures on the multiplicative and additive opposites #
Additive structures on αᵐᵒᵖ
#
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Multiplicative structures on αᵐᵒᵖ
#
We also generate additive structures on αᵃᵒᵖ
using to_additive
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
SemiconjBy.op
{α : Type u_1}
[Mul α]
{a x y : α}
(h : SemiconjBy a x y)
:
SemiconjBy (MulOpposite.op a) (MulOpposite.op y) (MulOpposite.op x)
theorem
AddSemiconjBy.op
{α : Type u_1}
[Add α]
{a x y : α}
(h : AddSemiconjBy a x y)
:
AddSemiconjBy (AddOpposite.op a) (AddOpposite.op y) (AddOpposite.op x)
theorem
SemiconjBy.unop
{α : Type u_1}
[Mul α]
{a x y : αᵐᵒᵖ}
(h : SemiconjBy a x y)
:
SemiconjBy (MulOpposite.unop a) (MulOpposite.unop y) (MulOpposite.unop x)
theorem
Commute.op
{α : Type u_1}
[Mul α]
{x y : α}
(h : Commute x y)
:
Commute (MulOpposite.op x) (MulOpposite.op y)
theorem
AddCommute.op
{α : Type u_1}
[Add α]
{x y : α}
(h : AddCommute x y)
:
AddCommute (AddOpposite.op x) (AddOpposite.op y)
theorem
Commute.unop
{α : Type u_1}
[Mul α]
{x y : αᵐᵒᵖ}
(h : Commute x y)
:
Commute (MulOpposite.unop x) (MulOpposite.unop y)
@[simp]
@[simp]