Documentation

Mathlib.Algebra.Field.Opposite

Field structure on the multiplicative/additive opposite #

Equations
    Equations
      @[simp]
      theorem MulOpposite.op_nnratCast {α : Type u_1} [NNRatCast α] (q : ℚ≥0) :
      op q = q
      @[simp]
      theorem AddOpposite.op_nnratCast {α : Type u_1} [NNRatCast α] (q : ℚ≥0) :
      op q = q
      @[simp]
      theorem MulOpposite.unop_nnratCast {α : Type u_1} [NNRatCast α] (q : ℚ≥0) :
      unop q = q
      @[simp]
      theorem AddOpposite.unop_nnratCast {α : Type u_1} [NNRatCast α] (q : ℚ≥0) :
      unop q = q
      @[simp]
      theorem MulOpposite.op_ratCast {α : Type u_1} [RatCast α] (q : ) :
      op q = q
      @[simp]
      theorem AddOpposite.op_ratCast {α : Type u_1} [RatCast α] (q : ) :
      op q = q
      @[simp]
      theorem MulOpposite.unop_ratCast {α : Type u_1} [RatCast α] (q : ) :
      unop q = q
      @[simp]
      theorem AddOpposite.unop_ratCast {α : Type u_1} [RatCast α] (q : ) :
      unop q = q
      instance MulOpposite.instField {α : Type u_1} [Field α] :
      Equations
        instance AddOpposite.instField {α : Type u_1} [Field α] :
        Equations