Documentation
Mathlib
.
Algebra
.
Field
.
Opposite
Search
return to top
source
Imports
Init
Mathlib.Algebra.Field.Defs
Mathlib.Algebra.Ring.Opposite
Mathlib.Data.Int.Cast.Lemmas
Imported by
MulOpposite
.
instNNRatCast
AddOpposite
.
instNNRatCast
MulOpposite
.
instRatCast
AddOpposite
.
instRatCast
MulOpposite
.
op_nnratCast
AddOpposite
.
op_nnratCast
MulOpposite
.
unop_nnratCast
AddOpposite
.
unop_nnratCast
MulOpposite
.
op_ratCast
AddOpposite
.
op_ratCast
MulOpposite
.
unop_ratCast
AddOpposite
.
unop_ratCast
MulOpposite
.
instDivisionSemiring
MulOpposite
.
instDivisionRing
MulOpposite
.
instSemifield
MulOpposite
.
instField
AddOpposite
.
instDivisionSemiring
AddOpposite
.
instDivisionRing
AddOpposite
.
instSemifield
AddOpposite
.
instField
Field structure on the multiplicative/additive opposite
#
source
instance
MulOpposite
.
instNNRatCast
{
α
:
Type
u_1}
[
NNRatCast
α
]
:
NNRatCast
α
ᵐᵒᵖ
Equations
source
instance
AddOpposite
.
instNNRatCast
{
α
:
Type
u_1}
[
NNRatCast
α
]
:
NNRatCast
α
ᵃᵒᵖ
Equations
source
instance
MulOpposite
.
instRatCast
{
α
:
Type
u_1}
[
RatCast
α
]
:
RatCast
α
ᵐᵒᵖ
Equations
source
instance
AddOpposite
.
instRatCast
{
α
:
Type
u_1}
[
RatCast
α
]
:
RatCast
α
ᵃᵒᵖ
Equations
source
@[simp]
theorem
MulOpposite
.
op_nnratCast
{
α
:
Type
u_1}
[
NNRatCast
α
]
(
q
:
ℚ≥0
)
:
op
↑
q
=
↑
q
source
@[simp]
theorem
AddOpposite
.
op_nnratCast
{
α
:
Type
u_1}
[
NNRatCast
α
]
(
q
:
ℚ≥0
)
:
op
↑
q
=
↑
q
source
@[simp]
theorem
MulOpposite
.
unop_nnratCast
{
α
:
Type
u_1}
[
NNRatCast
α
]
(
q
:
ℚ≥0
)
:
unop
↑
q
=
↑
q
source
@[simp]
theorem
AddOpposite
.
unop_nnratCast
{
α
:
Type
u_1}
[
NNRatCast
α
]
(
q
:
ℚ≥0
)
:
unop
↑
q
=
↑
q
source
@[simp]
theorem
MulOpposite
.
op_ratCast
{
α
:
Type
u_1}
[
RatCast
α
]
(
q
:
ℚ
)
:
op
↑
q
=
↑
q
source
@[simp]
theorem
AddOpposite
.
op_ratCast
{
α
:
Type
u_1}
[
RatCast
α
]
(
q
:
ℚ
)
:
op
↑
q
=
↑
q
source
@[simp]
theorem
MulOpposite
.
unop_ratCast
{
α
:
Type
u_1}
[
RatCast
α
]
(
q
:
ℚ
)
:
unop
↑
q
=
↑
q
source
@[simp]
theorem
AddOpposite
.
unop_ratCast
{
α
:
Type
u_1}
[
RatCast
α
]
(
q
:
ℚ
)
:
unop
↑
q
=
↑
q
source
instance
MulOpposite
.
instDivisionSemiring
{
α
:
Type
u_1}
[
DivisionSemiring
α
]
:
DivisionSemiring
α
ᵐᵒᵖ
Equations
source
instance
MulOpposite
.
instDivisionRing
{
α
:
Type
u_1}
[
DivisionRing
α
]
:
DivisionRing
α
ᵐᵒᵖ
Equations
source
instance
MulOpposite
.
instSemifield
{
α
:
Type
u_1}
[
Semifield
α
]
:
Semifield
α
ᵐᵒᵖ
Equations
source
instance
MulOpposite
.
instField
{
α
:
Type
u_1}
[
Field
α
]
:
Field
α
ᵐᵒᵖ
Equations
source
instance
AddOpposite
.
instDivisionSemiring
{
α
:
Type
u_1}
[
DivisionSemiring
α
]
:
DivisionSemiring
α
ᵃᵒᵖ
Equations
source
instance
AddOpposite
.
instDivisionRing
{
α
:
Type
u_1}
[
DivisionRing
α
]
:
DivisionRing
α
ᵃᵒᵖ
Equations
source
instance
AddOpposite
.
instSemifield
{
α
:
Type
u_1}
[
Semifield
α
]
:
Semifield
α
ᵃᵒᵖ
Equations
source
instance
AddOpposite
.
instField
{
α
:
Type
u_1}
[
Field
α
]
:
Field
α
ᵃᵒᵖ
Equations