Ring structures on the multiplicative opposite #
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
Equations
def
NonUnitalRingHom.toOpposite
{R : Type u_2}
{S : Type u_3}
[NonUnitalNonAssocSemiring R]
[NonUnitalNonAssocSemiring S]
(f : R →ₙ+* S)
(hf : ∀ (x y : R), Commute (f x) (f y))
:
A non-unital ring homomorphism f : R →ₙ+* S
such that f x
commutes with f y
for all x, y
defines a non-unital ring homomorphism to Sᵐᵒᵖ
.
Equations
Instances For
@[simp]
theorem
NonUnitalRingHom.toOpposite_apply
{R : Type u_2}
{S : Type u_3}
[NonUnitalNonAssocSemiring R]
[NonUnitalNonAssocSemiring S]
(f : R →ₙ+* S)
(hf : ∀ (x y : R), Commute (f x) (f y))
:
def
NonUnitalRingHom.fromOpposite
{R : Type u_2}
{S : Type u_3}
[NonUnitalNonAssocSemiring R]
[NonUnitalNonAssocSemiring S]
(f : R →ₙ+* S)
(hf : ∀ (x y : R), Commute (f x) (f y))
:
A non-unital ring homomorphism f : R →ₙ* S
such that f x
commutes with f y
for all x, y
defines a non-unital ring homomorphism from Rᵐᵒᵖ
.
Equations
Instances For
@[simp]
theorem
NonUnitalRingHom.fromOpposite_apply
{R : Type u_2}
{S : Type u_3}
[NonUnitalNonAssocSemiring R]
[NonUnitalNonAssocSemiring S]
(f : R →ₙ+* S)
(hf : ∀ (x y : R), Commute (f x) (f y))
:
def
NonUnitalRingHom.op
{R : Type u_2}
{S : Type u_3}
[NonUnitalNonAssocSemiring R]
[NonUnitalNonAssocSemiring S]
:
A non-unital ring hom R →ₙ+* S
can equivalently be viewed as a non-unital ring hom
Rᵐᵒᵖ →+* Sᵐᵒᵖ
. This is the action of the (fully faithful) ᵐᵒᵖ
-functor on morphisms.
Equations
Instances For
@[simp]
theorem
NonUnitalRingHom.op_symm_apply_apply
{R : Type u_2}
{S : Type u_3}
[NonUnitalNonAssocSemiring R]
[NonUnitalNonAssocSemiring S]
(f : Rᵐᵒᵖ →ₙ+* Sᵐᵒᵖ)
(a✝ : R)
:
@[simp]
theorem
NonUnitalRingHom.op_apply_apply
{R : Type u_2}
{S : Type u_3}
[NonUnitalNonAssocSemiring R]
[NonUnitalNonAssocSemiring S]
(f : R →ₙ+* S)
(a✝ : Rᵐᵒᵖ)
:
def
NonUnitalRingHom.unop
{R : Type u_2}
{S : Type u_3}
[NonUnitalNonAssocSemiring R]
[NonUnitalNonAssocSemiring S]
:
The 'unopposite' of a non-unital ring hom Rᵐᵒᵖ →ₙ+* Sᵐᵒᵖ
. Inverse to
NonUnitalRingHom.op
.
Equations
Instances For
A ring hom R →+* S
can equivalently be viewed as a ring hom Rᵐᵒᵖ →+* Sᵐᵒᵖ
. This is the
action of the (fully faithful) ᵐᵒᵖ
-functor on morphisms.
Equations
Instances For
@[simp]
theorem
RingHom.op_symm_apply_apply
{R : Type u_2}
{S : Type u_3}
[NonAssocSemiring R]
[NonAssocSemiring S]
(f : Rᵐᵒᵖ →+* Sᵐᵒᵖ)
(a✝ : R)
:
@[simp]
theorem
RingHom.op_apply_apply
{R : Type u_2}
{S : Type u_3}
[NonAssocSemiring R]
[NonAssocSemiring S]
(f : R →+* S)
(a✝ : Rᵐᵒᵖ)
:
The 'unopposite' of a ring hom Rᵐᵒᵖ →+* Sᵐᵒᵖ
. Inverse to RingHom.op
.