Documentation

Mathlib.Algebra.Ring.Opposite

Ring structures on the multiplicative opposite #

Equations
    instance MulOpposite.instRing {R : Type u_1} [Ring R] :
    Equations
      Equations
        instance AddOpposite.instRing {R : Type u_1} [Ring R] :
        Equations
          def NonUnitalRingHom.toOpposite {R : Type u_2} {S : Type u_3} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →ₙ+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

          A non-unital ring homomorphism f : R →ₙ+* S such that f x commutes with f y for all x, y defines a non-unital ring homomorphism to Sᵐᵒᵖ.

          Equations
            Instances For
              @[simp]
              theorem NonUnitalRingHom.toOpposite_apply {R : Type u_2} {S : Type u_3} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →ₙ+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :
              def NonUnitalRingHom.fromOpposite {R : Type u_2} {S : Type u_3} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →ₙ+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

              A non-unital ring homomorphism f : R →ₙ* S such that f x commutes with f y for all x, y defines a non-unital ring homomorphism from Rᵐᵒᵖ.

              Equations
                Instances For
                  @[simp]
                  theorem NonUnitalRingHom.fromOpposite_apply {R : Type u_2} {S : Type u_3} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →ₙ+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                  A non-unital ring hom R →ₙ+* S can equivalently be viewed as a non-unital ring hom Rᵐᵒᵖ →+* Sᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

                  Equations
                    Instances For

                      The 'unopposite' of a non-unital ring hom Rᵐᵒᵖ →ₙ+* Sᵐᵒᵖ. Inverse to NonUnitalRingHom.op.

                      Equations
                        Instances For
                          def RingHom.toOpposite {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                          A ring homomorphism f : R →+* S such that f x commutes with f y for all x, y defines a ring homomorphism to Sᵐᵒᵖ.

                          Equations
                            Instances For
                              @[simp]
                              theorem RingHom.toOpposite_apply {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :
                              def RingHom.fromOpposite {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                              A ring homomorphism f : R →+* S such that f x commutes with f y for all x, y defines a ring homomorphism from Rᵐᵒᵖ.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem RingHom.fromOpposite_apply {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                                  A ring hom R →+* S can equivalently be viewed as a ring hom Rᵐᵒᵖ →+* Sᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem RingHom.op_symm_apply_apply {R : Type u_2} {S : Type u_3} [NonAssocSemiring R] [NonAssocSemiring S] (f : Rᵐᵒᵖ →+* Sᵐᵒᵖ) (a✝ : R) :
                                      @[simp]
                                      theorem RingHom.op_apply_apply {R : Type u_2} {S : Type u_3} [NonAssocSemiring R] [NonAssocSemiring S] (f : R →+* S) (a✝ : Rᵐᵒᵖ) :
                                      (op f) a✝ = MulOpposite.op (f (MulOpposite.unop a✝))

                                      The 'unopposite' of a ring hom Rᵐᵒᵖ →+* Sᵐᵒᵖ. Inverse to RingHom.op.

                                      Equations
                                        Instances For