Documentation

Std.Data.Iterators.Consumers.Monadic.Loop

Loop-based consumers #

This module provides consumers that iterate over a given iterator, applying a certain user-supplied function in every iteration. Concretely, the following operations are provided:

Some producers and combinators provide specialized implementations. These are captured by the IteratorLoop and IteratorLoopPartial typeclasses. They should be implemented by all types of iterators. A default implementation is provided. The typeclass LawfulIteratorLoop asserts that an IteratorLoop instance equals the default implementation.

def Std.Iterators.IteratorLoop.rel (α : Type w) (m : Type w → Type w') {β : Type w} [Iterator α m β] {γ : Type x} (plausible_forInStep : βγForInStep γProp) (p' p : IterM m β × γ) :

Relation that needs to be well-formed in order for a loop over an iterator to terminate. It is assumed that the plausible_forInStep predicate relates the input and output of the stepper function.

Equations
    Instances For
      def Std.Iterators.IteratorLoop.WellFounded (α : Type w) (m : Type w → Type w') {β : Type w} [Iterator α m β] {γ : Type x} (plausible_forInStep : βγForInStep γProp) :

      Asserts that IteratorLoop.rel is well-founded.

      Equations
        Instances For
          class Std.Iterators.IteratorLoop (α : Type w) (m : Type w → Type w') {β : Type w} [Iterator α m β] (n : Type w → Type w'') :
          Type (max (max (w + 1) w') w'')

          IteratorLoop α m provides efficient implementations of loop-based consumers for α-based iterators. The basis is a ForIn-style loop construct with the complication that it can be used for infinite iterators, too -- given a proof that the given loop will nevertheless terminate.

          This class is experimental and users of the iterator API should not explicitly depend on it. They can, however, assume that consumers that require an instance will work for all iterators provided by the standard library.

          • forIn (_lift : (γ : Type w) → m γn γ) (γ : Type w) (plausible_forInStep : βγForInStep γProp) : WellFounded α m plausible_forInStepIterM m βγ((b : β) → (c : γ) → n (Subtype (plausible_forInStep b c)))n γ
          Instances
            class Std.Iterators.IteratorLoopPartial (α : Type w) (m : Type w → Type w') {β : Type w} [Iterator α m β] (n : Type w → Type w'') :
            Type (max (max (w + 1) w') w'')

            IteratorLoopPartial α m provides efficient implementations of loop-based consumers for α-based iterators. The basis is a partial, i.e. potentially nonterminating, ForIn instance.

            This class is experimental and users of the iterator API should not explicitly depend on it. They can, however, assume that consumers that require an instance will work for all iterators provided by the standard library.

            • forInPartial (_lift : (γ : Type w) → m γn γ) {γ : Type w} : IterM m βγ(βγn (ForInStep γ))n γ
            Instances
              instance Std.Iterators.instWellFoundedRelationWFRel {α : Type w} {m : Type w → Type w'} {β : Type w} [Iterator α m β] {γ : Type x} {plausible_forInStep : βγForInStep γProp} (wf : IteratorLoop.WellFounded α m plausible_forInStep) :
              Equations
                @[irreducible, specialize #[]]
                def Std.Iterators.IterM.DefaultConsumers.forIn {m : Type w → Type w'} {α β : Type w} [Iterator α m β] {n : Type w → Type w''} [Monad n] (lift : (γ : Type w) → m γn γ) (γ : Type w) (plausible_forInStep : βγForInStep γProp) (wf : IteratorLoop.WellFounded α m plausible_forInStep) (it : IterM m β) (init : γ) (f : (b : β) → (c : γ) → n (Subtype (plausible_forInStep b c))) :
                n γ

                This is the loop implementation of the default instance IteratorLoop.defaultImplementation.

                Equations
                  Instances For
                    @[inline]
                    def Std.Iterators.IteratorLoop.defaultImplementation {β α : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Monad n] [Iterator α m β] :

                    This is the default implementation of the IteratorLoop class. It simply iterates through the iterator using IterM.step. For certain iterators, more efficient implementations are possible and should be used instead.

                    Equations
                      Instances For
                        class Std.Iterators.LawfulIteratorLoop {β : Type w} (α : Type w) (m : Type w → Type w') (n : Type w → Type w'') [Monad n] [Iterator α m β] [Finite α m] [i : IteratorLoop α m n] :

                        Asserts that a given IteratorLoop instance is equal to IteratorLoop.defaultImplementation. (Even though equal, the given instance might be vastly more efficient.)

                        Instances
                          @[specialize #[]]
                          partial def Std.Iterators.IterM.DefaultConsumers.forInPartial {m : Type w → Type w'} {α β : Type w} [Iterator α m β] {n : Type w → Type w''} [Monad n] (lift : (γ : Type w) → m γn γ) (γ : Type w) (it : IterM m β) (init : γ) (f : βγn (ForInStep γ)) :
                          n γ

                          This is the loop implementation of the default instance IteratorLoopPartial.defaultImplementation.

                          @[inline]
                          def Std.Iterators.IteratorLoopPartial.defaultImplementation {β α : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Monad m] [Monad n] [Iterator α m β] :

                          This is the default implementation of the IteratorLoopPartial class. It simply iterates through the iterator using IterM.step. For certain iterators, more efficient implementations are possible and should be used instead.

                          Equations
                            Instances For
                              instance Std.Iterators.instLawfulIteratorLoopOfMonad {β : Type w} (α : Type w) (m n : Type w → Type w') [Monad m] [Monad n] [Iterator α m β] [Finite α m] :
                              theorem Std.Iterators.IteratorLoop.wellFounded_of_finite {m : Type w → Type w'} {α β γ : Type w} [Iterator α m β] [Finite α m] :
                              WellFounded α m fun (x : β) (x : γ) (x : ForInStep γ) => True
                              @[inline]
                              def Std.Iterators.IteratorLoop.finiteForIn {m : Type w → Type w'} {n : Type w → Type w''} {α β : Type w} [Iterator α m β] [Finite α m] [IteratorLoop α m n] (lift : (γ : Type w) → m γn γ) :
                              ForIn n (IterM m β) β

                              This ForIn-style loop construct traverses a finite iterator using an IteratorLoop instance.

                              Equations
                                Instances For
                                  instance Std.Iterators.instForInIterMOfFiniteOfIteratorLoopOfMonadLiftT {m : Type w → Type w'} {n : Type w → Type w''} {α β : Type w} [Iterator α m β] [Finite α m] [IteratorLoop α m n] [MonadLiftT m n] :
                                  ForIn n (IterM m β) β
                                  Equations
                                    instance Std.Iterators.instForInPartialOfIteratorLoopPartialOfMonadLiftT {m : Type w → Type w'} {n : Type w → Type w''} {α β : Type w} [Iterator α m β] [IteratorLoopPartial α m n] [MonadLiftT m n] :
                                    ForIn n (IterM.Partial m β) β
                                    Equations
                                      instance Std.Iterators.instForMIterMOfFiniteOfIteratorLoopOfMonadLiftT {m : Type w → Type w'} {n : Type w → Type w''} {α β : Type w} [Iterator α m β] [Finite α m] [IteratorLoop α m n] [MonadLiftT m n] :
                                      ForM n (IterM m β) β
                                      Equations
                                        instance Std.Iterators.instForMPartialOfFiniteOfIteratorLoopPartialOfMonadLiftT {m : Type w → Type w'} {n : Type w → Type w''} {α β : Type w} [Iterator α m β] [Finite α m] [IteratorLoopPartial α m n] [MonadLiftT m n] :
                                        ForM n (IterM.Partial m β) β
                                        Equations
                                          @[inline]
                                          def Std.Iterators.IterM.foldM {m : Type w → Type w'} {n : Type w → Type w''} [Monad n] {α β γ : Type w} [Iterator α m β] [Finite α m] [IteratorLoop α m n] [MonadLiftT m n] (f : γβn γ) (init : γ) (it : IterM m β) :
                                          n γ

                                          Folds a monadic function over an iterator from the left, accumulating a value starting with init. The accumulated value is combined with the each element of the list in order, using f.

                                          The monadic effects of f are interleaved with potential effects caused by the iterator's step function. Therefore, it may not be equivalent to (← it.toList).foldlM.

                                          This function requires a Finite instance proving that the iterator will finish after a finite number of steps. If the iterator is not finite or such an instance is not available, consider using it.allowNontermination.foldM instead of it.foldM. However, it is not possible to formally verify the behavior of the partial variant.

                                          Equations
                                            Instances For
                                              @[inline]
                                              def Std.Iterators.IterM.Partial.foldM {m n : Type w → Type w'} [Monad n] {α β γ : Type w} [Iterator α m β] [IteratorLoopPartial α m n] [MonadLiftT m n] (f : γβn γ) (init : γ) (it : Partial m β) :
                                              n γ

                                              Folds a monadic function over an iterator from the left, accumulating a value starting with init. The accumulated value is combined with the each element of the list in order, using f.

                                              The monadic effects of f are interleaved with potential effects caused by the iterator's step function. Therefore, it may not be equivalent to it.toList.foldlM.

                                              This is a partial, potentially nonterminating, function. It is not possible to formally verify its behavior. If the iterator has a Finite instance, consider using IterM.foldM instead.

                                              Equations
                                                Instances For
                                                  @[inline]
                                                  def Std.Iterators.IterM.fold {m : Type w → Type w'} {α β γ : Type w} [Monad m] [Iterator α m β] [Finite α m] [IteratorLoop α m m] (f : γβγ) (init : γ) (it : IterM m β) :
                                                  m γ

                                                  Folds a function over an iterator from the left, accumulating a value starting with init. The accumulated value is combined with the each element of the list in order, using f.

                                                  It is equivalent to it.toList.foldl.

                                                  This function requires a Finite instance proving that the iterator will finish after a finite number of steps. If the iterator is not finite or such an instance is not available, consider using it.allowNontermination.fold instead of it.fold. However, it is not possible to formally verify the behavior of the partial variant.

                                                  Equations
                                                    Instances For
                                                      @[inline]
                                                      def Std.Iterators.IterM.Partial.fold {m : Type w → Type w'} {α β γ : Type w} [Monad m] [Iterator α m β] [IteratorLoopPartial α m m] (f : γβγ) (init : γ) (it : Partial m β) :
                                                      m γ

                                                      Folds a function over an iterator from the left, accumulating a value starting with init. The accumulated value is combined with the each element of the list in order, using f.

                                                      It is equivalent to it.toList.foldl.

                                                      This is a partial, potentially nonterminating, function. It is not possible to formally verify its behavior. If the iterator has a Finite instance, consider using IterM.fold instead.

                                                      Equations
                                                        Instances For
                                                          @[inline]
                                                          def Std.Iterators.IterM.drain {α : Type w} {m : Type w → Type w'} [Monad m] {β : Type w} [Iterator α m β] [Finite α m] (it : IterM m β) [IteratorLoop α m m] :

                                                          Iterates over the whole iterator, applying the monadic effects of each step, discarding all emitted values.

                                                          This function requires a Finite instance proving that the iterator will finish after a finite number of steps. If the iterator is not finite or such an instance is not available, consider using it.allowNontermination.drain instead of it.drain. However, it is not possible to formally verify the behavior of the partial variant.

                                                          Equations
                                                            Instances For
                                                              @[inline]
                                                              def Std.Iterators.IterM.Partial.drain {α : Type w} {m : Type w → Type w'} [Monad m] {β : Type w} [Iterator α m β] (it : Partial m β) [IteratorLoopPartial α m m] :

                                                              Iterates over the whole iterator, applying the monadic effects of each step, discarding all emitted values.

                                                              This is a partial, potentially nonterminating, function. It is not possible to formally verify its behavior. If the iterator has a Finite instance, consider using IterM.drain instead.

                                                              Equations
                                                                Instances For