Documentation

Mathlib.RingTheory.NonUnitalSubring.Defs

NonUnitalSubrings #

Let R be a non-unital ring. This file defines the "bundled" non-unital subring type NonUnitalSubring R, a type whose terms correspond to non-unital subrings of R. This is the preferred way to talk about non-unital subrings in mathlib.

Main definitions #

Notation used here:

(R : Type u) [NonUnitalRing R] (S : Type u) [NonUnitalRing S] (f g : R →ₙ+* S) (A : NonUnitalSubring R) (B : NonUnitalSubring S) (s : Set R)

Implementation notes #

A non-unital subring is implemented as a NonUnitalSubsemiring which is also an additive subgroup.

Lattice inclusion (e.g. and ) is used rather than set notation ( and ), although is defined as membership of a non-unital subring's underlying set.

Tags #

non-unital subring

NonUnitalSubringClass S R states that S is a type of subsets s ⊆ R that are both a multiplicative submonoid and an additive subgroup.

Instances
    @[instance 75]

    A non-unital subring of a non-unital ring inherits a non-unital ring structure

    Equations
      @[instance 75]

      A non-unital subring of a non-unital ring inherits a non-unital ring structure

      Equations
        @[instance 75]

        A non-unital subring of a NonUnitalCommRing is a NonUnitalCommRing.

        Equations
          def NonUnitalSubringClass.subtype {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [SetLike S R] [hSR : NonUnitalSubringClass S R] (s : S) :
          s →ₙ+* R

          The natural non-unital ring hom from a non-unital subring of a non-unital ring R to R.

          Equations
            Instances For
              @[simp]
              theorem NonUnitalSubringClass.subtype_apply {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [SetLike S R] [hSR : NonUnitalSubringClass S R] {s : S} (x : s) :
              (subtype s) x = x
              @[simp]

              NonUnitalSubring R is the type of non-unital subrings of R. A non-unital subring of R is a subset s that is a multiplicative subsemigroup and an additive subgroup. Note in particular that it shares the same 0 as R.

              Instances For

                The underlying submonoid of a NonUnitalSubring.

                Equations
                  Instances For

                    The actual NonUnitalSubring obtained from an element of a NonUnitalSubringClass.

                    Equations
                      Instances For
                        @[simp]
                        theorem NonUnitalSubring.ofClass_carrier {S : Type u_1} {R : Type u_2} [NonUnitalNonAssocRing R] [SetLike S R] [NonUnitalSubringClass S R] (s : S) :
                        (ofClass s) = s
                        @[instance 100]
                        instance NonUnitalSubring.instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallNeg {R : Type u} [NonUnitalNonAssocRing R] :
                        CanLift (Set R) (NonUnitalSubring R) SetLike.coe fun (s : Set R) => 0 s (∀ {x y : R}, x sy sx + y s) (∀ {x y : R}, x sy sx * y s) ∀ {x : R}, x s-x s
                        @[simp]
                        theorem NonUnitalSubring.mem_mk {R : Type u} [NonUnitalNonAssocRing R] {S : NonUnitalSubsemiring R} {x : R} (h : ∀ {x : R}, x S.carrier-x S.carrier) :
                        x { toNonUnitalSubsemiring := S, neg_mem' := h } x S
                        @[simp]
                        theorem NonUnitalSubring.coe_set_mk {R : Type u} [NonUnitalNonAssocRing R] (S : NonUnitalSubsemiring R) (h : ∀ {x : R}, x S.carrier-x S.carrier) :
                        { toNonUnitalSubsemiring := S, neg_mem' := h } = S
                        @[simp]
                        theorem NonUnitalSubring.mk_le_mk {R : Type u} [NonUnitalNonAssocRing R] {S S' : NonUnitalSubsemiring R} (h : ∀ {x : R}, x S.carrier-x S.carrier) (h' : ∀ {x : R}, x S'.carrier-x S'.carrier) :
                        { toNonUnitalSubsemiring := S, neg_mem' := h } { toNonUnitalSubsemiring := S', neg_mem' := h' } S S'
                        theorem NonUnitalSubring.ext {R : Type u} [NonUnitalNonAssocRing R] {S T : NonUnitalSubring R} (h : ∀ (x : R), x S x T) :
                        S = T

                        Two non-unital subrings are equal if they have the same elements.

                        theorem NonUnitalSubring.ext_iff {R : Type u} [NonUnitalNonAssocRing R] {S T : NonUnitalSubring R} :
                        S = T ∀ (x : R), x S x T
                        def NonUnitalSubring.copy {R : Type u} [NonUnitalNonAssocRing R] (S : NonUnitalSubring R) (s : Set R) (hs : s = S) :

                        Copy of a non-unital subring with a new carrier equal to the old one. Useful to fix definitional equalities.

                        Equations
                          Instances For
                            @[simp]
                            theorem NonUnitalSubring.coe_copy {R : Type u} [NonUnitalNonAssocRing R] (S : NonUnitalSubring R) (s : Set R) (hs : s = S) :
                            (S.copy s hs) = s
                            theorem NonUnitalSubring.copy_eq {R : Type u} [NonUnitalNonAssocRing R] (S : NonUnitalSubring R) (s : Set R) (hs : s = S) :
                            S.copy s hs = S
                            def NonUnitalSubring.mk' {R : Type u} [NonUnitalNonAssocRing R] (s : Set R) (sm : Subsemigroup R) (sa : AddSubgroup R) (hm : sm = s) (ha : sa = s) :

                            Construct a NonUnitalSubring R from a set s, a subsemigroup sm, and an additive subgroup sa such that x ∈ s ↔ x ∈ sm ↔ x ∈ sa.

                            Equations
                              Instances For
                                @[simp]
                                theorem NonUnitalSubring.coe_mk' {R : Type u} [NonUnitalNonAssocRing R] {s : Set R} {sm : Subsemigroup R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
                                (NonUnitalSubring.mk' s sm sa hm ha) = s
                                @[simp]
                                theorem NonUnitalSubring.mem_mk' {R : Type u} [NonUnitalNonAssocRing R] {s : Set R} {sm : Subsemigroup R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) {x : R} :
                                x NonUnitalSubring.mk' s sm sa hm ha x s
                                @[simp]
                                theorem NonUnitalSubring.mk'_toSubsemigroup {R : Type u} [NonUnitalNonAssocRing R] {s : Set R} {sm : Subsemigroup R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
                                @[simp]
                                theorem NonUnitalSubring.mk'_toAddSubgroup {R : Type u} [NonUnitalNonAssocRing R] {s : Set R} {sm : Subsemigroup R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :

                                A non-unital subring contains the ring's 0.

                                theorem NonUnitalSubring.mul_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x y : R} :
                                x sy sx * y s

                                A non-unital subring is closed under multiplication.

                                theorem NonUnitalSubring.add_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x y : R} :
                                x sy sx + y s

                                A non-unital subring is closed under addition.

                                theorem NonUnitalSubring.neg_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x : R} :
                                x s-x s

                                A non-unital subring is closed under negation.

                                theorem NonUnitalSubring.sub_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x y : R} (hx : x s) (hy : y s) :
                                x - y s

                                A non-unital subring is closed under subtraction

                                A non-unital subring of a non-unital ring inherits a non-unital ring structure

                                Equations
                                  theorem NonUnitalSubring.zsmul_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x : R} (hx : x s) (n : ) :
                                  n x s
                                  @[simp]
                                  theorem NonUnitalSubring.val_add {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) (x y : s) :
                                  ↑(x + y) = x + y
                                  @[simp]
                                  theorem NonUnitalSubring.val_neg {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) (x : s) :
                                  ↑(-x) = -x
                                  @[simp]
                                  theorem NonUnitalSubring.val_mul {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) (x y : s) :
                                  ↑(x * y) = x * y
                                  theorem NonUnitalSubring.coe_eq_zero_iff {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x : s} :
                                  x = 0 x = 0

                                  Partial order #

                                  def NonUnitalSubring.inclusion {R : Type u} [NonUnitalNonAssocRing R] {S T : NonUnitalSubring R} (h : S T) :
                                  S →ₙ+* T

                                  The ring homomorphism associated to an inclusion of NonUnitalSubrings.

                                  Equations
                                    Instances For