Documentation

Mathlib.Order.Hom.CompleteLattice

Complete lattice homomorphisms #

This file defines frame homomorphisms and complete lattice homomorphisms.

We use the DFunLike design, so each type of morphisms has a companion typeclass which is meant to be satisfied by itself and all stricter types.

Types of morphisms #

Typeclasses #

Concrete homs #

TODO #

Frame homs are Heyting homs.

structure sSupHom (α : Type u_8) (β : Type u_9) [SupSet α] [SupSet β] :
Type (max u_8 u_9)

The type of -preserving functions from α to β.

  • toFun : αβ

    The underlying function of a sSupHom.

  • map_sSup' (s : Set α) : self.toFun (sSup s) = sSup (self.toFun '' s)

    The proposition that a sSupHom commutes with arbitrary suprema/joins.

Instances For
    structure sInfHom (α : Type u_8) (β : Type u_9) [InfSet α] [InfSet β] :
    Type (max u_8 u_9)

    The type of -preserving functions from α to β.

    • toFun : αβ

      The underlying function of an sInfHom.

    • map_sInf' (s : Set α) : self.toFun (sInf s) = sInf (self.toFun '' s)

      The proposition that a sInfHom commutes with arbitrary infima/meets

    Instances For
      structure FrameHom (α : Type u_8) (β : Type u_9) [CompleteLattice α] [CompleteLattice β] extends InfTopHom α β :
      Type (max u_8 u_9)

      The type of frame homomorphisms from α to β. They preserve finite meets and arbitrary joins.

      Instances For
        structure CompleteLatticeHom (α : Type u_8) (β : Type u_9) [CompleteLattice α] [CompleteLattice β] extends sInfHom α β :
        Type (max u_8 u_9)

        The type of complete lattice homomorphisms from α to β.

        Instances For
          class sSupHomClass (F : Type u_8) (α : Type u_9) (β : Type u_10) [SupSet α] [SupSet β] [FunLike F α β] :

          sSupHomClass F α β states that F is a type of -preserving morphisms.

          You should extend this class when you extend sSupHom.

          • map_sSup (f : F) (s : Set α) : f (sSup s) = sSup (f '' s)

            The proposition that members of sSupHomClasss commute with arbitrary suprema/joins.

          Instances
            class sInfHomClass (F : Type u_8) (α : Type u_9) (β : Type u_10) [InfSet α] [InfSet β] [FunLike F α β] :

            sInfHomClass F α β states that F is a type of -preserving morphisms.

            You should extend this class when you extend sInfHom.

            • map_sInf (f : F) (s : Set α) : f (sInf s) = sInf (f '' s)

              The proposition that members of sInfHomClasss commute with arbitrary infima/meets.

            Instances
              class FrameHomClass (F : Type u_8) (α : Type u_9) (β : Type u_10) [CompleteLattice α] [CompleteLattice β] [FunLike F α β] extends InfTopHomClass F α β :

              FrameHomClass F α β states that F is a type of frame morphisms. They preserve and .

              You should extend this class when you extend FrameHom.

              Instances
                class CompleteLatticeHomClass (F : Type u_8) (α : Type u_9) (β : Type u_10) [CompleteLattice α] [CompleteLattice β] [FunLike F α β] extends sInfHomClass F α β :

                CompleteLatticeHomClass F α β states that F is a type of complete lattice morphisms.

                You should extend this class when you extend CompleteLatticeHom.

                Instances
                  @[simp]
                  theorem map_iSup {F : Type u_1} {α : Type u_2} {β : Type u_3} {ι : Sort u_6} [FunLike F α β] [SupSet α] [SupSet β] [sSupHomClass F α β] (f : F) (g : ια) :
                  f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i)
                  theorem map_iSup₂ {F : Type u_1} {α : Type u_2} {β : Type u_3} {ι : Sort u_6} {κ : ιSort u_7} [FunLike F α β] [SupSet α] [SupSet β] [sSupHomClass F α β] (f : F) (g : (i : ι) → κ iα) :
                  f (⨆ (i : ι), ⨆ (j : κ i), g i j) = ⨆ (i : ι), ⨆ (j : κ i), f (g i j)
                  @[simp]
                  theorem map_iInf {F : Type u_1} {α : Type u_2} {β : Type u_3} {ι : Sort u_6} [FunLike F α β] [InfSet α] [InfSet β] [sInfHomClass F α β] (f : F) (g : ια) :
                  f (⨅ (i : ι), g i) = ⨅ (i : ι), f (g i)
                  theorem map_iInf₂ {F : Type u_1} {α : Type u_2} {β : Type u_3} {ι : Sort u_6} {κ : ιSort u_7} [FunLike F α β] [InfSet α] [InfSet β] [sInfHomClass F α β] (f : F) (g : (i : ι) → κ iα) :
                  f (⨅ (i : ι), ⨅ (j : κ i), g i j) = ⨅ (i : ι), ⨅ (j : κ i), f (g i j)
                  @[instance 100]
                  instance sSupHomClass.toSupBotHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [sSupHomClass F α β] :
                  @[instance 100]
                  instance sInfHomClass.toInfTopHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [sInfHomClass F α β] :
                  @[instance 100]
                  instance FrameHomClass.tosSupHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [FrameHomClass F α β] :
                  sSupHomClass F α β
                  @[instance 100]
                  instance FrameHomClass.toBoundedLatticeHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [FrameHomClass F α β] :
                  @[instance 100]
                  instance CompleteLatticeHomClass.toFrameHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [CompleteLatticeHomClass F α β] :
                  @[instance 100]
                  @[instance 100]
                  instance OrderIsoClass.tosSupHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [CompleteLattice α] [CompleteLattice β] [OrderIsoClass F α β] :
                  sSupHomClass F α β
                  @[instance 100]
                  instance OrderIsoClass.tosInfHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [CompleteLattice α] [CompleteLattice β] [OrderIsoClass F α β] :
                  sInfHomClass F α β
                  @[instance 100]
                  instance OrderIsoClass.toCompleteLatticeHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [CompleteLattice α] [CompleteLattice β] [OrderIsoClass F α β] :
                  def OrderIso.toCompleteLatticeHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : α ≃o β) :

                  Reinterpret an order isomorphism as a morphism of complete lattices.

                  Equations
                    Instances For
                      @[simp]
                      theorem OrderIso.toCompleteLatticeHom_toFun {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : α ≃o β) (a : α) :
                      instance instCoeTCSSupHomOfSSupHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [SupSet α] [SupSet β] [sSupHomClass F α β] :
                      CoeTC F (sSupHom α β)
                      Equations
                        instance instCoeTCSInfHomOfSInfHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [InfSet α] [InfSet β] [sInfHomClass F α β] :
                        CoeTC F (sInfHom α β)
                        Equations
                          instance instCoeTCFrameHomOfFrameHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [CompleteLattice α] [CompleteLattice β] [FrameHomClass F α β] :
                          CoeTC F (FrameHom α β)
                          Equations

                            Supremum homomorphisms #

                            instance sSupHom.instFunLike {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] :
                            FunLike (sSupHom α β) α β
                            Equations
                              instance sSupHom.instSSupHomClass {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] :
                              sSupHomClass (sSupHom α β) α β
                              @[simp]
                              theorem sSupHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) :
                              f.toFun = f
                              @[simp]
                              theorem sSupHom.coe_mk {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : αβ) (hf : ∀ (s : Set α), f (sSup s) = sSup (f '' s)) :
                              { toFun := f, map_sSup' := hf } = f
                              theorem sSupHom.ext {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] {f g : sSupHom α β} (h : ∀ (a : α), f a = g a) :
                              f = g
                              theorem sSupHom.ext_iff {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] {f g : sSupHom α β} :
                              f = g ∀ (a : α), f a = g a
                              def sSupHom.copy {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) (f' : αβ) (h : f' = f) :
                              sSupHom α β

                              Copy of a sSupHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem sSupHom.coe_copy {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) (f' : αβ) (h : f' = f) :
                                  (f.copy f' h) = f'
                                  theorem sSupHom.copy_eq {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) (f' : αβ) (h : f' = f) :
                                  f.copy f' h = f
                                  def sSupHom.id (α : Type u_2) [SupSet α] :
                                  sSupHom α α

                                  id as a sSupHom.

                                  Equations
                                    Instances For
                                      instance sSupHom.instInhabited (α : Type u_2) [SupSet α] :
                                      Equations
                                        @[simp]
                                        theorem sSupHom.coe_id (α : Type u_2) [SupSet α] :
                                        (sSupHom.id α) = id
                                        @[simp]
                                        theorem sSupHom.id_apply {α : Type u_2} [SupSet α] (a : α) :
                                        (sSupHom.id α) a = a
                                        def sSupHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (f : sSupHom β γ) (g : sSupHom α β) :
                                        sSupHom α γ

                                        Composition of sSupHoms as a sSupHom.

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem sSupHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (f : sSupHom β γ) (g : sSupHom α β) :
                                            (f.comp g) = f g
                                            @[simp]
                                            theorem sSupHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (f : sSupHom β γ) (g : sSupHom α β) (a : α) :
                                            (f.comp g) a = f (g a)
                                            @[simp]
                                            theorem sSupHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [SupSet α] [SupSet β] [SupSet γ] [SupSet δ] (f : sSupHom γ δ) (g : sSupHom β γ) (h : sSupHom α β) :
                                            (f.comp g).comp h = f.comp (g.comp h)
                                            @[simp]
                                            theorem sSupHom.comp_id {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) :
                                            f.comp (sSupHom.id α) = f
                                            @[simp]
                                            theorem sSupHom.id_comp {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) :
                                            (sSupHom.id β).comp f = f
                                            @[simp]
                                            theorem sSupHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] {g₁ g₂ : sSupHom β γ} {f : sSupHom α β} (hf : Function.Surjective f) :
                                            g₁.comp f = g₂.comp f g₁ = g₂
                                            @[simp]
                                            theorem sSupHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] {g : sSupHom β γ} {f₁ f₂ : sSupHom α β} (hg : Function.Injective g) :
                                            g.comp f₁ = g.comp f₂ f₁ = f₂
                                            instance sSupHom.instPartialOrder {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} :
                                            Equations
                                              instance sSupHom.instBot {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} :
                                              Bot (sSupHom α β)
                                              Equations
                                                instance sSupHom.instOrderBot {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} :
                                                Equations
                                                  @[simp]
                                                  theorem sSupHom.coe_bot {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} :
                                                  =
                                                  @[simp]
                                                  theorem sSupHom.bot_apply {α : Type u_2} {β : Type u_3} [SupSet α] {x✝ : CompleteLattice β} (a : α) :

                                                  Infimum homomorphisms #

                                                  instance sInfHom.instFunLike {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] :
                                                  FunLike (sInfHom α β) α β
                                                  Equations
                                                    instance sInfHom.instSInfHomClass {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] :
                                                    sInfHomClass (sInfHom α β) α β
                                                    @[simp]
                                                    theorem sInfHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) :
                                                    f.toFun = f
                                                    @[simp]
                                                    theorem sInfHom.coe_mk {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : αβ) (hf : ∀ (s : Set α), f (sInf s) = sInf (f '' s)) :
                                                    { toFun := f, map_sInf' := hf } = f
                                                    theorem sInfHom.ext {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] {f g : sInfHom α β} (h : ∀ (a : α), f a = g a) :
                                                    f = g
                                                    theorem sInfHom.ext_iff {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] {f g : sInfHom α β} :
                                                    f = g ∀ (a : α), f a = g a
                                                    def sInfHom.copy {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) (f' : αβ) (h : f' = f) :
                                                    sInfHom α β

                                                    Copy of a sInfHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                                                    Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem sInfHom.coe_copy {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) (f' : αβ) (h : f' = f) :
                                                        (f.copy f' h) = f'
                                                        theorem sInfHom.copy_eq {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) (f' : αβ) (h : f' = f) :
                                                        f.copy f' h = f
                                                        def sInfHom.id (α : Type u_2) [InfSet α] :
                                                        sInfHom α α

                                                        id as an sInfHom.

                                                        Equations
                                                          Instances For
                                                            instance sInfHom.instInhabited (α : Type u_2) [InfSet α] :
                                                            Equations
                                                              @[simp]
                                                              theorem sInfHom.coe_id (α : Type u_2) [InfSet α] :
                                                              (sInfHom.id α) = id
                                                              @[simp]
                                                              theorem sInfHom.id_apply {α : Type u_2} [InfSet α] (a : α) :
                                                              (sInfHom.id α) a = a
                                                              def sInfHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (f : sInfHom β γ) (g : sInfHom α β) :
                                                              sInfHom α γ

                                                              Composition of sInfHoms as a sInfHom.

                                                              Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem sInfHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (f : sInfHom β γ) (g : sInfHom α β) :
                                                                  (f.comp g) = f g
                                                                  @[simp]
                                                                  theorem sInfHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (f : sInfHom β γ) (g : sInfHom α β) (a : α) :
                                                                  (f.comp g) a = f (g a)
                                                                  @[simp]
                                                                  theorem sInfHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [InfSet α] [InfSet β] [InfSet γ] [InfSet δ] (f : sInfHom γ δ) (g : sInfHom β γ) (h : sInfHom α β) :
                                                                  (f.comp g).comp h = f.comp (g.comp h)
                                                                  @[simp]
                                                                  theorem sInfHom.comp_id {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) :
                                                                  f.comp (sInfHom.id α) = f
                                                                  @[simp]
                                                                  theorem sInfHom.id_comp {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) :
                                                                  (sInfHom.id β).comp f = f
                                                                  @[simp]
                                                                  theorem sInfHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] {g₁ g₂ : sInfHom β γ} {f : sInfHom α β} (hf : Function.Surjective f) :
                                                                  g₁.comp f = g₂.comp f g₁ = g₂
                                                                  @[simp]
                                                                  theorem sInfHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] {g : sInfHom β γ} {f₁ f₂ : sInfHom α β} (hg : Function.Injective g) :
                                                                  g.comp f₁ = g.comp f₂ f₁ = f₂
                                                                  instance sInfHom.instPartialOrder {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] :
                                                                  Equations
                                                                    instance sInfHom.instTop {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] :
                                                                    Top (sInfHom α β)
                                                                    Equations
                                                                      instance sInfHom.instOrderTop {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] :
                                                                      Equations
                                                                        @[simp]
                                                                        theorem sInfHom.coe_top {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] :
                                                                        =
                                                                        @[simp]
                                                                        theorem sInfHom.top_apply {α : Type u_2} {β : Type u_3} [InfSet α] [CompleteLattice β] (a : α) :

                                                                        Frame homomorphisms #

                                                                        instance FrameHom.instFunLike {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] :
                                                                        FunLike (FrameHom α β) α β
                                                                        Equations
                                                                          instance FrameHom.instFrameHomClass {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] :
                                                                          FrameHomClass (FrameHom α β) α β
                                                                          def FrameHom.toLatticeHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :

                                                                          Reinterpret a FrameHom as a LatticeHom.

                                                                          Equations
                                                                            Instances For
                                                                              theorem FrameHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
                                                                              f.toFun = f
                                                                              @[simp]
                                                                              theorem FrameHom.coe_toInfTopHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
                                                                              f.toInfTopHom = f
                                                                              @[simp]
                                                                              theorem FrameHom.coe_toLatticeHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
                                                                              f.toLatticeHom = f
                                                                              @[simp]
                                                                              theorem FrameHom.coe_mk {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : InfTopHom α β) (hf : ∀ (s : Set α), f.toFun (sSup s) = sSup (f.toFun '' s)) :
                                                                              { toInfTopHom := f, map_sSup' := hf } = f
                                                                              theorem FrameHom.ext {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] {f g : FrameHom α β} (h : ∀ (a : α), f a = g a) :
                                                                              f = g
                                                                              theorem FrameHom.ext_iff {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] {f g : FrameHom α β} :
                                                                              f = g ∀ (a : α), f a = g a
                                                                              def FrameHom.copy {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) (f' : αβ) (h : f' = f) :
                                                                              FrameHom α β

                                                                              Copy of a FrameHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                                                                              Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem FrameHom.coe_copy {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) (f' : αβ) (h : f' = f) :
                                                                                  (f.copy f' h) = f'
                                                                                  theorem FrameHom.copy_eq {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) (f' : αβ) (h : f' = f) :
                                                                                  f.copy f' h = f
                                                                                  def FrameHom.id (α : Type u_2) [CompleteLattice α] :
                                                                                  FrameHom α α

                                                                                  id as a FrameHom.

                                                                                  Equations
                                                                                    Instances For
                                                                                      Equations
                                                                                        @[simp]
                                                                                        theorem FrameHom.coe_id (α : Type u_2) [CompleteLattice α] :
                                                                                        (FrameHom.id α) = id
                                                                                        @[simp]
                                                                                        theorem FrameHom.id_apply {α : Type u_2} [CompleteLattice α] (a : α) :
                                                                                        (FrameHom.id α) a = a
                                                                                        def FrameHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : FrameHom β γ) (g : FrameHom α β) :
                                                                                        FrameHom α γ

                                                                                        Composition of FrameHoms as a FrameHom.

                                                                                        Equations
                                                                                          Instances For
                                                                                            @[simp]
                                                                                            theorem FrameHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : FrameHom β γ) (g : FrameHom α β) :
                                                                                            (f.comp g) = f g
                                                                                            @[simp]
                                                                                            theorem FrameHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : FrameHom β γ) (g : FrameHom α β) (a : α) :
                                                                                            (f.comp g) a = f (g a)
                                                                                            @[simp]
                                                                                            theorem FrameHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] [CompleteLattice δ] (f : FrameHom γ δ) (g : FrameHom β γ) (h : FrameHom α β) :
                                                                                            (f.comp g).comp h = f.comp (g.comp h)
                                                                                            @[simp]
                                                                                            theorem FrameHom.comp_id {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
                                                                                            f.comp (FrameHom.id α) = f
                                                                                            @[simp]
                                                                                            theorem FrameHom.id_comp {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : FrameHom α β) :
                                                                                            (FrameHom.id β).comp f = f
                                                                                            @[simp]
                                                                                            theorem FrameHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {g₁ g₂ : FrameHom β γ} {f : FrameHom α β} (hf : Function.Surjective f) :
                                                                                            g₁.comp f = g₂.comp f g₁ = g₂
                                                                                            @[simp]
                                                                                            theorem FrameHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {g : FrameHom β γ} {f₁ f₂ : FrameHom α β} (hg : Function.Injective g) :
                                                                                            g.comp f₁ = g.comp f₂ f₁ = f₂
                                                                                            instance FrameHom.instPartialOrder {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] :
                                                                                            Equations

                                                                                              Complete lattice homomorphisms #

                                                                                              instance CompleteLatticeHom.instFunLike {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] :
                                                                                              Equations
                                                                                                def CompleteLatticeHom.tosSupHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
                                                                                                sSupHom α β

                                                                                                Reinterpret a CompleteLatticeHom as a sSupHom.

                                                                                                Equations
                                                                                                  Instances For

                                                                                                    Reinterpret a CompleteLatticeHom as a BoundedLatticeHom.

                                                                                                    Equations
                                                                                                      Instances For
                                                                                                        theorem CompleteLatticeHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
                                                                                                        f.toFun = f
                                                                                                        @[simp]
                                                                                                        theorem CompleteLatticeHom.coe_tosInfHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
                                                                                                        f.tosInfHom = f
                                                                                                        @[simp]
                                                                                                        theorem CompleteLatticeHom.coe_tosSupHom {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) :
                                                                                                        f.tosSupHom = f
                                                                                                        @[simp]
                                                                                                        theorem CompleteLatticeHom.coe_mk {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : sInfHom α β) (hf : ∀ (s : Set α), f.toFun (sSup s) = sSup (f.toFun '' s)) :
                                                                                                        { tosInfHom := f, map_sSup' := hf } = f
                                                                                                        theorem CompleteLatticeHom.ext {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] {f g : CompleteLatticeHom α β} (h : ∀ (a : α), f a = g a) :
                                                                                                        f = g
                                                                                                        theorem CompleteLatticeHom.ext_iff {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] {f g : CompleteLatticeHom α β} :
                                                                                                        f = g ∀ (a : α), f a = g a
                                                                                                        def CompleteLatticeHom.copy {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (f' : αβ) (h : f' = f) :

                                                                                                        Copy of a CompleteLatticeHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                                                                                                        Equations
                                                                                                          Instances For
                                                                                                            @[simp]
                                                                                                            theorem CompleteLatticeHom.coe_copy {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (f' : αβ) (h : f' = f) :
                                                                                                            (f.copy f' h) = f'
                                                                                                            theorem CompleteLatticeHom.copy_eq {α : Type u_2} {β : Type u_3} [CompleteLattice α] [CompleteLattice β] (f : CompleteLatticeHom α β) (f' : αβ) (h : f' = f) :
                                                                                                            f.copy f' h = f

                                                                                                            id as a CompleteLatticeHom.

                                                                                                            Equations
                                                                                                              Instances For
                                                                                                                @[simp]
                                                                                                                theorem CompleteLatticeHom.id_apply {α : Type u_2} [CompleteLattice α] (a : α) :
                                                                                                                def CompleteLatticeHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : CompleteLatticeHom β γ) (g : CompleteLatticeHom α β) :

                                                                                                                Composition of CompleteLatticeHoms as a CompleteLatticeHom.

                                                                                                                Equations
                                                                                                                  Instances For
                                                                                                                    @[simp]
                                                                                                                    theorem CompleteLatticeHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : CompleteLatticeHom β γ) (g : CompleteLatticeHom α β) :
                                                                                                                    (f.comp g) = f g
                                                                                                                    @[simp]
                                                                                                                    theorem CompleteLatticeHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] (f : CompleteLatticeHom β γ) (g : CompleteLatticeHom α β) (a : α) :
                                                                                                                    (f.comp g) a = f (g a)
                                                                                                                    @[simp]
                                                                                                                    theorem CompleteLatticeHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] [CompleteLattice δ] (f : CompleteLatticeHom γ δ) (g : CompleteLatticeHom β γ) (h : CompleteLatticeHom α β) :
                                                                                                                    (f.comp g).comp h = f.comp (g.comp h)
                                                                                                                    @[simp]
                                                                                                                    @[simp]
                                                                                                                    @[simp]
                                                                                                                    theorem CompleteLatticeHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {g₁ g₂ : CompleteLatticeHom β γ} {f : CompleteLatticeHom α β} (hf : Function.Surjective f) :
                                                                                                                    g₁.comp f = g₂.comp f g₁ = g₂
                                                                                                                    @[simp]
                                                                                                                    theorem CompleteLatticeHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {g : CompleteLatticeHom β γ} {f₁ f₂ : CompleteLatticeHom α β} (hg : Function.Injective g) :
                                                                                                                    g.comp f₁ = g.comp f₂ f₁ = f₂

                                                                                                                    Dual homs #

                                                                                                                    def sSupHom.dual {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] :

                                                                                                                    Reinterpret a -homomorphism as an -homomorphism between the dual orders.

                                                                                                                    Equations
                                                                                                                      Instances For
                                                                                                                        @[simp]
                                                                                                                        theorem sSupHom.dual_apply_toFun {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sSupHom α β) (a✝ : αᵒᵈ) :
                                                                                                                        @[simp]
                                                                                                                        theorem sSupHom.dual_symm_apply_toFun {α : Type u_2} {β : Type u_3} [SupSet α] [SupSet β] (f : sInfHom αᵒᵈ βᵒᵈ) (a✝ : α) :
                                                                                                                        @[simp]
                                                                                                                        @[simp]
                                                                                                                        theorem sSupHom.dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (g : sSupHom β γ) (f : sSupHom α β) :
                                                                                                                        @[simp]
                                                                                                                        theorem sSupHom.symm_dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [SupSet α] [SupSet β] [SupSet γ] (g : sInfHom βᵒᵈ γᵒᵈ) (f : sInfHom αᵒᵈ βᵒᵈ) :
                                                                                                                        def sInfHom.dual {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] :

                                                                                                                        Reinterpret an -homomorphism as a -homomorphism between the dual orders.

                                                                                                                        Equations
                                                                                                                          Instances For
                                                                                                                            @[simp]
                                                                                                                            theorem sInfHom.dual_symm_apply_toFun {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sSupHom αᵒᵈ βᵒᵈ) (a✝ : α) :
                                                                                                                            @[simp]
                                                                                                                            theorem sInfHom.dual_apply_toFun {α : Type u_2} {β : Type u_3} [InfSet α] [InfSet β] (f : sInfHom α β) (a✝ : αᵒᵈ) :
                                                                                                                            @[simp]
                                                                                                                            @[simp]
                                                                                                                            theorem sInfHom.dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (g : sInfHom β γ) (f : sInfHom α β) :
                                                                                                                            @[simp]
                                                                                                                            theorem sInfHom.symm_dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [InfSet α] [InfSet β] [InfSet γ] (g : sSupHom βᵒᵈ γᵒᵈ) (f : sSupHom αᵒᵈ βᵒᵈ) :

                                                                                                                            Reinterpret a complete lattice homomorphism as a complete lattice homomorphism between the dual lattices.

                                                                                                                            Equations
                                                                                                                              Instances For

                                                                                                                                Concrete homs #

                                                                                                                                def CompleteLatticeHom.setPreimage {α : Type u_2} {β : Type u_3} (f : αβ) :

                                                                                                                                Set.preimage as a complete lattice homomorphism.

                                                                                                                                See also sSupHom.setImage.

                                                                                                                                Equations
                                                                                                                                  Instances For
                                                                                                                                    @[simp]
                                                                                                                                    theorem CompleteLatticeHom.coe_setPreimage {α : Type u_2} {β : Type u_3} (f : αβ) :
                                                                                                                                    @[simp]
                                                                                                                                    theorem CompleteLatticeHom.setPreimage_apply {α : Type u_2} {β : Type u_3} (f : αβ) (s : Set β) :
                                                                                                                                    (setPreimage f) s = f ⁻¹' s
                                                                                                                                    theorem CompleteLatticeHom.setPreimage_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} (g : βγ) (f : αβ) :
                                                                                                                                    theorem Set.image_sSup {α : Type u_2} {β : Type u_3} {f : αβ} (s : Set (Set α)) :
                                                                                                                                    f '' sSup s = sSup (image f '' s)
                                                                                                                                    def sSupHom.setImage {α : Type u_2} {β : Type u_3} (f : αβ) :
                                                                                                                                    sSupHom (Set α) (Set β)

                                                                                                                                    Using Set.image, a function between types yields a sSupHom between their lattices of subsets.

                                                                                                                                    See also CompleteLatticeHom.setPreimage.

                                                                                                                                    Equations
                                                                                                                                      Instances For
                                                                                                                                        @[simp]
                                                                                                                                        theorem sSupHom.setImage_toFun {α : Type u_2} {β : Type u_3} (f : αβ) (s : Set α) :
                                                                                                                                        (setImage f) s = f '' s
                                                                                                                                        def Equiv.toOrderIsoSet {α : Type u_2} {β : Type u_3} (e : α β) :
                                                                                                                                        Set α ≃o Set β

                                                                                                                                        An equivalence of types yields an order isomorphism between their lattices of subsets.

                                                                                                                                        Equations
                                                                                                                                          Instances For
                                                                                                                                            @[simp]
                                                                                                                                            theorem Equiv.toOrderIsoSet_symm_apply {α : Type u_2} {β : Type u_3} (e : α β) (s : Set β) :
                                                                                                                                            @[simp]
                                                                                                                                            theorem Equiv.toOrderIsoSet_apply {α : Type u_2} {β : Type u_3} (e : α β) (s : Set α) :
                                                                                                                                            e.toOrderIsoSet s = e '' s
                                                                                                                                            def supsSupHom {α : Type u_2} [CompleteLattice α] :
                                                                                                                                            sSupHom (α × α) α

                                                                                                                                            The map (a, b) ↦ a ⊔ b as a sSupHom.

                                                                                                                                            Equations
                                                                                                                                              Instances For
                                                                                                                                                def infsInfHom {α : Type u_2} [CompleteLattice α] :
                                                                                                                                                sInfHom (α × α) α

                                                                                                                                                The map (a, b) ↦ a ⊓ b as an sInfHom.

                                                                                                                                                Equations
                                                                                                                                                  Instances For
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem supsSupHom_apply {α : Type u_2} [CompleteLattice α] (x : α × α) :
                                                                                                                                                    supsSupHom x = x.1x.2
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem infsInfHom_apply {α : Type u_2} [CompleteLattice α] (x : α × α) :
                                                                                                                                                    infsInfHom x = x.1x.2