Documentation

Mathlib.GroupTheory.QuotientGroup.Defs

Quotients of groups by normal subgroups #

This file defines the group structure on the quotient by a normal subgroup.

Main definitions #

Tags #

quotient groups

def QuotientGroup.con {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
Con G

The congruence relation generated by a normal subgroup.

Equations
    Instances For
      def QuotientAddGroup.con {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :

      The additive congruence relation generated by a normal additive subgroup.

      Equations
        Instances For
          instance QuotientGroup.Quotient.group {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
          Group (G N)
          Equations
            instance QuotientAddGroup.Quotient.addGroup {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
            Equations
              theorem QuotientGroup.con_ker_eq_conKer {G : Type u} [Group G] {M : Type x} [Monoid M] (f : G →* M) :

              The congruence relation defined by the kernel of a group homomorphism is equal to its kernel as a congruence relation.

              The additive congruence relation defined by the kernel of an additive group homomorphism is equal to its kernel as an additive congruence relation.

              def QuotientGroup.mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
              G →* G N

              The group homomorphism from G to G/N.

              Equations
                Instances For
                  def QuotientAddGroup.mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
                  G →+ G N

                  The additive group homomorphism from G to G/N.

                  Equations
                    Instances For
                      @[simp]
                      theorem QuotientGroup.coe_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
                      (mk' N) = mk
                      @[simp]
                      theorem QuotientAddGroup.coe_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
                      (mk' N) = mk
                      @[simp]
                      theorem QuotientGroup.mk'_apply {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (x : G) :
                      (mk' N) x = x
                      @[simp]
                      theorem QuotientAddGroup.mk'_apply {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (x : G) :
                      (mk' N) x = x
                      theorem QuotientGroup.mk'_eq_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {x y : G} :
                      (mk' N) x = (mk' N) y zN, x * z = y
                      theorem QuotientAddGroup.mk'_eq_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {x y : G} :
                      (mk' N) x = (mk' N) y zN, x + z = y
                      theorem QuotientGroup.monoidHom_ext {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] f g : G N →* M (h : f.comp (mk' N) = g.comp (mk' N)) :
                      f = g

                      Two MonoidHoms from a quotient group are equal if their compositions with QuotientGroup.mk' are equal.

                      See note [partially-applied ext lemmas].

                      theorem QuotientAddGroup.addMonoidHom_ext {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] f g : G N →+ M (h : f.comp (mk' N) = g.comp (mk' N)) :
                      f = g

                      Two AddMonoidHoms from an additive quotient group are equal if their compositions with AddQuotientGroup.mk' are equal.

                      See note [partially-applied ext lemmas].

                      theorem QuotientGroup.monoidHom_ext_iff {G : Type u} [Group G] {N : Subgroup G} [nN : N.Normal] {M : Type x} [Monoid M] {f g : G N →* M} :
                      f = g f.comp (mk' N) = g.comp (mk' N)
                      theorem QuotientAddGroup.addMonoidHom_ext_iff {G : Type u} [AddGroup G] {N : AddSubgroup G} [nN : N.Normal] {M : Type x} [AddMonoid M] {f g : G N →+ M} :
                      f = g f.comp (mk' N) = g.comp (mk' N)
                      @[simp]
                      theorem QuotientGroup.eq_one_iff {G : Type u} [Group G] {N : Subgroup G} [N.Normal] (x : G) :
                      x = 1 x N
                      @[simp]
                      theorem QuotientAddGroup.eq_zero_iff {G : Type u} [AddGroup G] {N : AddSubgroup G} [N.Normal] (x : G) :
                      x = 0 x N
                      @[simp]
                      theorem QuotientGroup.mk'_comp_subtype {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
                      (mk' N).comp N.subtype = 1
                      @[simp]
                      theorem QuotientAddGroup.mk'_comp_subtype {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
                      (mk' N).comp N.subtype = 0
                      @[simp]
                      theorem QuotientGroup.range_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
                      @[simp]
                      theorem QuotientAddGroup.range_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
                      theorem QuotientGroup.ker_le_range_iff {G : Type u} [Group G] {H : Type v} [Group H] {I : Type w} [MulOneClass I] (f : G →* H) [f.range.Normal] (g : H →* I) :
                      theorem QuotientAddGroup.ker_le_range_iff {G : Type u} [AddGroup G] {H : Type v} [AddGroup H] {I : Type w} [AddZeroClass I] (f : G →+ H) [f.range.Normal] (g : H →+ I) :
                      @[simp]
                      theorem QuotientGroup.ker_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
                      (mk' N).ker = N
                      @[simp]
                      theorem QuotientAddGroup.ker_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
                      (mk' N).ker = N
                      theorem QuotientGroup.eq_iff_div_mem {G : Type u} [Group G] {N : Subgroup G} [nN : N.Normal] {x y : G} :
                      x = y x / y N
                      theorem QuotientAddGroup.eq_iff_sub_mem {G : Type u} [AddGroup G] {N : AddSubgroup G} [nN : N.Normal] {x y : G} :
                      x = y x - y N
                      Equations
                        @[simp]
                        theorem QuotientGroup.mk_one {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
                        1 = 1
                        @[simp]
                        theorem QuotientAddGroup.mk_zero {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
                        0 = 0
                        @[simp]
                        theorem QuotientGroup.mk_mul {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a b : G) :
                        ↑(a * b) = a * b
                        @[simp]
                        theorem QuotientAddGroup.mk_add {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a b : G) :
                        ↑(a + b) = a + b
                        @[simp]
                        theorem QuotientGroup.mk_inv {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a : G) :
                        a⁻¹ = (↑a)⁻¹
                        @[simp]
                        theorem QuotientAddGroup.mk_neg {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a : G) :
                        ↑(-a) = -a
                        @[simp]
                        theorem QuotientGroup.mk_div {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a b : G) :
                        ↑(a / b) = a / b
                        @[simp]
                        theorem QuotientAddGroup.mk_sub {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a b : G) :
                        ↑(a - b) = a - b
                        @[simp]
                        theorem QuotientGroup.mk_pow {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a : G) (n : ) :
                        ↑(a ^ n) = a ^ n
                        @[simp]
                        theorem QuotientAddGroup.mk_nsmul {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a : G) (n : ) :
                        ↑(n a) = n a
                        @[simp]
                        theorem QuotientGroup.mk_zpow {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a : G) (n : ) :
                        ↑(a ^ n) = a ^ n
                        @[simp]
                        theorem QuotientAddGroup.mk_zsmul {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a : G) (n : ) :
                        ↑(n a) = n a
                        @[simp]
                        theorem QuotientGroup.map_mk'_self {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
                        @[simp]
                        def Con.subgroup {G : Type u} [Group G] (c : Con G) :

                        The subgroup defined by the class of 1 for a congruence relation on a group.

                        Equations
                          Instances For

                            The AddSubgroup defined by the class of 0 for an additive congruence relation on an AddGroup.

                            Equations
                              Instances For
                                @[simp]
                                theorem Con.mem_subgroup_iff {G : Type u} [Group G] {c : Con G} {x : G} :
                                x c.subgroup c x 1
                                @[simp]
                                theorem AddCon.mem_addSubgroup_iff {G : Type u} [AddGroup G] {c : AddCon G} {x : G} :
                                x c.addSubgroup c x 0
                                @[simp]

                                The normal subgroups correspond to the congruence relations on a group.

                                Equations
                                  Instances For

                                    The normal subgroups correspond to the additive congruence relations on an AddGroup.

                                    Equations
                                      Instances For
                                        theorem QuotientGroup.con_mono {G : Type u} [Group G] {N M : Subgroup G} [hN : N.Normal] [hM : M.Normal] (h : N M) :
                                        def QuotientGroup.lift {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] (φ : G →* M) (HN : N φ.ker) :
                                        G N →* M

                                        A group homomorphism φ : G →* M with N ⊆ ker(φ) descends (i.e. lifts) to a group homomorphism G/N →* M.

                                        Equations
                                          Instances For
                                            def QuotientAddGroup.lift {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (φ : G →+ M) (HN : N φ.ker) :
                                            G N →+ M

                                            An AddGroup homomorphism φ : G →+ M with N ⊆ ker(φ) descends (i.e. lifts) to a group homomorphism G/N →* M.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem QuotientGroup.lift_mk {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] {φ : G →* M} (HN : N φ.ker) (g : G) :
                                                (lift N φ HN) g = φ g
                                                @[simp]
                                                theorem QuotientAddGroup.lift_mk {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] {φ : G →+ M} (HN : N φ.ker) (g : G) :
                                                (lift N φ HN) g = φ g
                                                @[simp]
                                                theorem QuotientGroup.lift_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] {φ : G →* M} (HN : N φ.ker) (g : G) :
                                                (lift N φ HN) g = φ g
                                                @[simp]
                                                theorem QuotientAddGroup.lift_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] {φ : G →+ M} (HN : N φ.ker) (g : G) :
                                                (lift N φ HN) g = φ g
                                                @[simp]
                                                theorem QuotientGroup.lift_comp_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] (φ : G →* M) (HN : N φ.ker) :
                                                (lift N φ HN).comp (mk' N) = φ
                                                @[simp]
                                                theorem QuotientAddGroup.lift_comp_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (φ : G →+ M) (HN : N φ.ker) :
                                                (lift N φ HN).comp (mk' N) = φ
                                                @[simp]
                                                theorem QuotientGroup.lift_quot_mk {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] {φ : G →* M} (HN : N φ.ker) (g : G) :
                                                (lift N φ HN) (Quot.mk (⇑(leftRel N)) g) = φ g
                                                @[simp]
                                                theorem QuotientAddGroup.lift_quot_mk {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] {φ : G →+ M} (HN : N φ.ker) (g : G) :
                                                (lift N φ HN) (Quot.mk (⇑(leftRel N)) g) = φ g
                                                theorem QuotientGroup.lift_surjective_of_surjective {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] (φ : G →* M) ( : Function.Surjective φ) (HN : N φ.ker) :
                                                theorem QuotientAddGroup.lift_surjective_of_surjective {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (φ : G →+ M) ( : Function.Surjective φ) (HN : N φ.ker) :
                                                theorem QuotientGroup.ker_lift {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] (φ : G →* M) (HN : N φ.ker) :
                                                (lift N φ HN).ker = Subgroup.map (mk' N) φ.ker
                                                theorem QuotientAddGroup.ker_lift {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (φ : G →+ M) (HN : N φ.ker) :
                                                (lift N φ HN).ker = AddSubgroup.map (mk' N) φ.ker
                                                def QuotientGroup.map {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N Subgroup.comap f M) :
                                                G N →* H M

                                                A group homomorphism f : G →* H induces a map G/N →* H/M if N ⊆ f⁻¹(M).

                                                Equations
                                                  Instances For
                                                    def QuotientAddGroup.map {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (h : N AddSubgroup.comap f M) :
                                                    G N →+ H M

                                                    An AddGroup homomorphism f : G →+ H induces a map G/N →+ H/M if N ⊆ f⁻¹(M).

                                                    Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem QuotientGroup.map_mk {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N Subgroup.comap f M) (x : G) :
                                                        (map N M f h) x = (f x)
                                                        @[simp]
                                                        theorem QuotientAddGroup.map_mk {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (h : N AddSubgroup.comap f M) (x : G) :
                                                        (map N M f h) x = (f x)
                                                        theorem QuotientGroup.map_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N Subgroup.comap f M) (x : G) :
                                                        (map N M f h) ((mk' N) x) = (f x)
                                                        theorem QuotientAddGroup.map_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (h : N AddSubgroup.comap f M) (x : G) :
                                                        (map N M f h) ((mk' N) x) = (f x)
                                                        theorem QuotientGroup.map_surjective_of_surjective {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (hf : Function.Surjective (mk f)) (h : N Subgroup.comap f M) :
                                                        theorem QuotientAddGroup.map_surjective_of_surjective {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (hf : Function.Surjective (mk f)) (h : N AddSubgroup.comap f M) :
                                                        theorem QuotientGroup.ker_map {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N Subgroup.comap f M) :
                                                        (map N M f h).ker = Subgroup.map (mk' N) (Subgroup.comap f M)
                                                        theorem QuotientAddGroup.ker_map {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (h : N AddSubgroup.comap f M) :
                                                        theorem QuotientGroup.map_id_apply {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (h : N Subgroup.comap (MonoidHom.id G) N := ) (x : G N) :
                                                        (map N N (MonoidHom.id G) h) x = x
                                                        theorem QuotientAddGroup.map_id_apply {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (h : N AddSubgroup.comap (AddMonoidHom.id G) N := ) (x : G N) :
                                                        (map N N (AddMonoidHom.id G) h) x = x
                                                        @[simp]
                                                        theorem QuotientGroup.map_id {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (h : N Subgroup.comap (MonoidHom.id G) N := ) :
                                                        @[simp]
                                                        theorem QuotientAddGroup.map_id {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (h : N AddSubgroup.comap (AddMonoidHom.id G) N := ) :
                                                        @[simp]
                                                        theorem QuotientGroup.map_map {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] {I : Type u_1} [Group I] (M : Subgroup H) (O : Subgroup I) [M.Normal] [O.Normal] (f : G →* H) (g : H →* I) (hf : N Subgroup.comap f M) (hg : M Subgroup.comap g O) (hgf : N Subgroup.comap (g.comp f) O := ) (x : G N) :
                                                        (map M O g hg) ((map N M f hf) x) = (map N O (g.comp f) hgf) x
                                                        @[simp]
                                                        theorem QuotientAddGroup.map_map {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] {I : Type u_1} [AddGroup I] (M : AddSubgroup H) (O : AddSubgroup I) [M.Normal] [O.Normal] (f : G →+ H) (g : H →+ I) (hf : N AddSubgroup.comap f M) (hg : M AddSubgroup.comap g O) (hgf : N AddSubgroup.comap (g.comp f) O := ) (x : G N) :
                                                        (map M O g hg) ((map N M f hf) x) = (map N O (g.comp f) hgf) x
                                                        @[simp]
                                                        theorem QuotientGroup.map_comp_map {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] {I : Type u_1} [Group I] (M : Subgroup H) (O : Subgroup I) [M.Normal] [O.Normal] (f : G →* H) (g : H →* I) (hf : N Subgroup.comap f M) (hg : M Subgroup.comap g O) (hgf : N Subgroup.comap (g.comp f) O := ) :
                                                        (map M O g hg).comp (map N M f hf) = map N O (g.comp f) hgf
                                                        @[simp]
                                                        theorem QuotientAddGroup.map_comp_map {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] {I : Type u_1} [AddGroup I] (M : AddSubgroup H) (O : AddSubgroup I) [M.Normal] [O.Normal] (f : G →+ H) (g : H →+ I) (hf : N AddSubgroup.comap f M) (hg : M AddSubgroup.comap g O) (hgf : N AddSubgroup.comap (g.comp f) O := ) :
                                                        (map M O g hg).comp (map N M f hf) = map N O (g.comp f) hgf
                                                        @[simp]
                                                        theorem QuotientGroup.image_coe {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
                                                        mk '' N = 1
                                                        @[simp]
                                                        theorem QuotientAddGroup.image_coe {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
                                                        mk '' N = 0
                                                        theorem QuotientGroup.preimage_image_coe {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (s : Set G) :
                                                        mk ⁻¹' (mk '' s) = N * s
                                                        theorem QuotientAddGroup.preimage_image_coe {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (s : Set G) :
                                                        mk ⁻¹' (mk '' s) = N + s
                                                        theorem QuotientGroup.image_coe_inj {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {s t : Set G} :
                                                        mk '' s = mk '' t N * s = N * t
                                                        theorem QuotientAddGroup.image_coe_inj {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {s t : Set G} :
                                                        mk '' s = mk '' t N + s = N + t
                                                        def QuotientGroup.congr {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') :
                                                        G G' ≃* H H'

                                                        QuotientGroup.congr lifts the isomorphism e : G ≃ H to G ⧸ G' ≃ H ⧸ H', given that e maps G to H.

                                                        Equations
                                                          Instances For
                                                            def QuotientAddGroup.congr {G : Type u} [AddGroup G] {H : Type v} [AddGroup H] (G' : AddSubgroup G) (H' : AddSubgroup H) [G'.Normal] [H'.Normal] (e : G ≃+ H) (he : AddSubgroup.map (↑e) G' = H') :
                                                            G G' ≃+ H H'

                                                            QuotientAddGroup.congr lifts the isomorphism e : G ≃ H to G ⧸ G' ≃ H ⧸ H', given that e maps G to H.

                                                            Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem QuotientGroup.congr_mk {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') (x : G) :
                                                                (congr G' H' e he) x = (e x)
                                                                theorem QuotientGroup.congr_mk' {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') (x : G) :
                                                                (congr G' H' e he) ((mk' G') x) = (mk' H') (e x)
                                                                @[simp]
                                                                theorem QuotientGroup.congr_apply {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') (x : G) :
                                                                (congr G' H' e he) x = (mk' H') (e x)
                                                                @[simp]
                                                                theorem QuotientGroup.congr_refl {G : Type u} [Group G] (G' : Subgroup G) [G'.Normal] (he : Subgroup.map (↑(MulEquiv.refl G)) G' = G' := ) :
                                                                congr G' G' (MulEquiv.refl G) he = MulEquiv.refl (G G')
                                                                @[simp]
                                                                theorem QuotientGroup.congr_symm {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') :
                                                                (congr G' H' e he).symm = congr H' G' e.symm