Documentation

Mathlib.GroupTheory.Congruence.Opposite

Congruences on the opposite of a group #

This file defines the order isomorphism between the congruences on a group G and the congruences on the opposite group Gᵒᵖ.

def Con.op {M : Type u_1} [Mul M] (c : Con M) :

If c is a multiplicative congruence on M, then (a, b) ↦ c b.unop a.unop is a multiplicative congruence on Mᵐᵒᵖ.

Equations
    Instances For
      def AddCon.op {M : Type u_1} [Add M] (c : AddCon M) :

      If c is an additive congruence on M, then (a, b) ↦ c b.unop a.unop is an additive congruence on Mᵃᵒᵖ

      Equations
        Instances For
          def Con.unop {M : Type u_1} [Mul M] (c : Con Mᵐᵒᵖ) :
          Con M

          If c is a multiplicative congruence on Mᵐᵒᵖ, then (a, b) ↦ c bᵒᵖ aᵒᵖ is a multiplicative congruence on M.

          Equations
            Instances For
              def AddCon.unop {M : Type u_1} [Add M] (c : AddCon Mᵃᵒᵖ) :

              If c is an additive congruence on Mᵃᵒᵖ, then (a, b) ↦ c bᵒᵖ aᵒᵖ is an additive congruence on M

              Equations
                Instances For
                  def Con.orderIsoOp {M : Type u_1} [Mul M] :

                  The multiplicative congruences on M bijects to the multiplicative congruences on Mᵐᵒᵖ

                  Equations
                    Instances For

                      The additive congruences on M bijects to the additive congruences on Mᵃᵒᵖ

                      Equations
                        Instances For
                          @[simp]
                          theorem Con.orderIsoOp_apply {M : Type u_1} [Mul M] (c : Con M) :
                          @[simp]
                          @[simp]
                          theorem AddCon.orderIsoOp_apply {M : Type u_1} [Add M] (c : AddCon M) :