Documentation

Mathlib.Data.Nat.Factorial.Basic

Factorial and variants #

This file defines the factorial, along with the ascending and descending variants. For the proof that the factorial of n counts the permutations of an n-element set, see Fintype.card_perm.

Main declarations #

Nat.factorial n is the factorial of n.

Equations
    Instances For

      factorial notation (n)! for Nat.factorial n. In Lean, names can end with exclamation marks (e.g. List.get!), so you cannot write n! in Lean, but must write (n)! or n ! instead. The former is preferred, since Lean can confuse the ! in n ! as the (prefix) boolean negation operation in some cases. For numerals the parentheses are not required, so e.g. 0! or 1! work fine. Todo: replace occurrences of n ! with (n)! in Mathlib.

      Equations
        Instances For
          @[simp]
          theorem Nat.factorial_succ (n : ) :
          (n + 1).factorial = (n + 1) * n.factorial
          @[simp]
          @[simp]
          theorem Nat.mul_factorial_pred {n : } (hn : n 0) :
          n * (n - 1).factorial = n.factorial
          theorem Nat.dvd_factorial {m n : } :
          0 < mm nm n.factorial
          theorem Nat.factorial_le {m n : } (h : m n) :
          theorem Nat.factorial_lt {m n : } (hn : 0 < n) :
          theorem Nat.factorial_lt_of_lt {m n : } (hn : 0 < n) (h : n < m) :
          @[simp]
          theorem Nat.one_lt_factorial {n : } :
          1 < n.factorial 1 < n
          @[simp]
          theorem Nat.factorial_eq_one {n : } :
          n.factorial = 1 n 1
          theorem Nat.factorial_inj {m n : } (hn : 1 < n) :
          theorem Nat.factorial_inj' {m n : } (h : 1 < n 1 < m) :
          theorem Nat.lt_factorial_self {n : } (hi : 3 n) :
          theorem Nat.add_factorial_succ_lt_factorial_add_succ {i : } (n : ) (hi : 2 i) :
          i + (n + 1).factorial < (i + n + 1).factorial
          theorem Nat.add_factorial_lt_factorial_add {i n : } (hi : 2 i) (hn : 1 n) :
          i + n.factorial < (i + n).factorial
          theorem Nat.add_factorial_le_factorial_add (i : ) {n : } (n1 : 1 n) :

          Ascending and descending factorials #

          def Nat.ascFactorial (n : ) :

          n.ascFactorial k = n (n + 1) ⋯ (n + k - 1). This is closely related to ascPochhammer, but much less general.

          Equations
            Instances For
              @[simp]

              (n + 1).ascFactorial k = (n + k) ! / n ! but without ℕ-division. See Nat.ascFactorial_eq_div for the version with ℕ-division.

              theorem Nat.factorial_mul_ascFactorial' (n k : ) (h : 0 < n) :
              (n - 1).factorial * n.ascFactorial k = (n + k - 1).factorial

              n.ascFactorial k = (n + k - 1)! / (n - 1)! for n > 0 but without ℕ-division. See Nat.ascFactorial_eq_div for the version with ℕ-division. Consider using factorial_mul_ascFactorial to avoid complications of ℕ-subtraction.

              theorem Nat.ascFactorial_eq_div (n k : ) :

              Avoid in favor of Nat.factorial_mul_ascFactorial if you can. ℕ-division isn't worth it.

              theorem Nat.ascFactorial_eq_div' (n k : ) (h : 0 < n) :
              n.ascFactorial k = (n + k - 1).factorial / (n - 1).factorial

              Avoid in favor of Nat.factorial_mul_ascFactorial' if you can. ℕ-division isn't worth it.

              theorem Nat.ascFactorial_of_sub {n k : } :
              (n - k) * (n - k + 1).ascFactorial k = (n - k).ascFactorial (k + 1)
              theorem Nat.pow_lt_ascFactorial' (n k : ) :
              (n + 1) ^ (k + 2) < (n + 1).ascFactorial (k + 2)
              theorem Nat.pow_lt_ascFactorial (n : ) {k : } :
              2 k → (n + 1) ^ k < (n + 1).ascFactorial k
              theorem Nat.ascFactorial_le_pow_add (n k : ) :
              (n + 1).ascFactorial k (n + k) ^ k
              theorem Nat.ascFactorial_lt_pow_add (n : ) {k : } :
              2 k(n + 1).ascFactorial k < (n + k) ^ k
              theorem Nat.ascFactorial_pos (n k : ) :
              0 < (n + 1).ascFactorial k
              def Nat.descFactorial (n : ) :

              n.descFactorial k = n! / (n - k)! (as seen in Nat.descFactorial_eq_div), but implemented recursively to allow for "quick" computation when using norm_num. This is closely related to descPochhammer, but much less general.

              Equations
                Instances For
                  @[simp]
                  @[simp]
                  theorem Nat.descFactorial_succ (n k : ) :
                  n.descFactorial (k + 1) = (n - k) * n.descFactorial k
                  theorem Nat.succ_descFactorial_succ (n k : ) :
                  (n + 1).descFactorial (k + 1) = (n + 1) * n.descFactorial k
                  theorem Nat.succ_descFactorial (n k : ) :
                  (n + 1 - k) * (n + 1).descFactorial k = (n + 1) * n.descFactorial k
                  @[simp]
                  theorem Nat.descFactorial_of_lt {n k : } :
                  n < kn.descFactorial k = 0

                  Alias of the reverse direction of Nat.descFactorial_eq_zero_iff_lt.

                  n.descFactorial k = n! / (n - k)! but without ℕ-division. See Nat.descFactorial_eq_div for the version using ℕ-division.

                  theorem Nat.descFactorial_mul_descFactorial {k m n : } (hkm : k m) :
                  theorem Nat.descFactorial_eq_div {n k : } (h : k n) :

                  Avoid in favor of Nat.factorial_mul_descFactorial if you can. ℕ-division isn't worth it.

                  theorem Nat.descFactorial_le (n : ) {k m : } (h : k m) :
                  theorem Nat.pow_sub_lt_descFactorial' {n k : } :
                  k + 2 n → (n - (k + 1)) ^ (k + 2) < n.descFactorial (k + 2)
                  theorem Nat.pow_sub_lt_descFactorial {n k : } :
                  2 kk n → (n + 1 - k) ^ k < n.descFactorial k
                  theorem Nat.descFactorial_lt_pow {n : } (hn : 1 n) {k : } :
                  2 kn.descFactorial k < n ^ k
                  theorem Nat.factorial_two_mul_le (n : ) :
                  (2 * n).factorial (2 * n) ^ n * n.factorial