Documentation
Mathlib
.
Data
.
Fintype
.
Units
Search
return to top
source
Imports
Init
Mathlib.Data.Fintype.Prod
Mathlib.Data.Fintype.Sum
Mathlib.SetTheory.Cardinal.Finite
Mathlib.Algebra.Ring.Int.Units
Imported by
UnitsInt
.
fintype
UnitsInt
.
univ
Fintype
.
card_units_int
instFintypeUnitsOfDecidableEq
instFiniteUnits
Nat
.
card_units
Nat
.
card_eq_card_units_add_one
Fintype
.
card_units
Fintype
.
card_eq_card_units_add_one
fintype instances relating to units
#
source
instance
UnitsInt
.
fintype
:
Fintype
ℤ
ˣ
Equations
source
@[simp]
theorem
UnitsInt
.
univ
:
Finset.univ
=
{
1
,
-
1
}
source
@[simp]
theorem
Fintype
.
card_units_int
:
card
ℤ
ˣ
=
2
source
instance
instFintypeUnitsOfDecidableEq
{
α
:
Type
u_1}
[
Monoid
α
]
[
Fintype
α
]
[
DecidableEq
α
]
:
Fintype
α
ˣ
Equations
source
instance
instFiniteUnits
{
α
:
Type
u_1}
[
Monoid
α
]
[
Finite
α
]
:
Finite
α
ˣ
source
theorem
Nat
.
card_units
(
α
:
Type
u_1)
[
GroupWithZero
α
]
:
Nat.card
α
ˣ
=
Nat.card
α
-
1
source
theorem
Nat
.
card_eq_card_units_add_one
(
α
:
Type
u_1)
[
GroupWithZero
α
]
[
Finite
α
]
:
Nat.card
α
=
Nat.card
α
ˣ
+
1
source
theorem
Fintype
.
card_units
(
α
:
Type
u_1)
[
GroupWithZero
α
]
[
Fintype
α
]
[
DecidableEq
α
]
:
card
α
ˣ
=
card
α
-
1
source
theorem
Fintype
.
card_eq_card_units_add_one
(
α
:
Type
u_1)
[
GroupWithZero
α
]
[
Fintype
α
]
[
DecidableEq
α
]
:
card
α
=
card
α
ˣ
+
1