Documentation
Mathlib
.
Data
.
Fintype
.
Sigma
Search
return to top
source
Imports
Init
Mathlib.Data.Finset.Sigma
Mathlib.Data.Fintype.OfMap
Imported by
Set
.
biUnion_finsetSigma_univ
Set
.
biUnion_finsetSigma_univ'
Set
.
biInter_finsetSigma_univ
Set
.
biInter_finsetSigma_univ'
Sigma
.
instFintype
PSigma
.
instFintype
Finset
.
univ_sigma_univ
fintype instances for sigma types
#
source
theorem
Set
.
biUnion_finsetSigma_univ
{
ι
:
Type
u_1}
{
α
:
Type
u_2}
{
κ
:
ι
→
Type
u_3
}
[
(
i
:
ι
) →
Fintype
(
κ
i
)
]
(
s
:
Finset
ι
)
(
f
:
Sigma
κ
→
Set
α
)
:
⋃
ij
∈
s
.
sigma
fun (
x
:
ι
) =>
Finset.univ
,
f
ij
=
⋃
i
∈
s
,
⋃ (
j
:
κ
i
),
f
⟨
i
,
j
⟩
source
theorem
Set
.
biUnion_finsetSigma_univ'
{
ι
:
Type
u_1}
{
α
:
Type
u_2}
{
κ
:
ι
→
Type
u_3
}
[
(
i
:
ι
) →
Fintype
(
κ
i
)
]
(
s
:
Finset
ι
)
(
f
:
(
i
:
ι
) →
κ
i
→
Set
α
)
:
⋃
i
∈
s
,
⋃ (
j
:
κ
i
),
f
i
j
=
⋃
ij
∈
s
.
sigma
fun (
x
:
ι
) =>
Finset.univ
,
f
ij
.
fst
ij
.
snd
source
theorem
Set
.
biInter_finsetSigma_univ
{
ι
:
Type
u_1}
{
α
:
Type
u_2}
{
κ
:
ι
→
Type
u_3
}
[
(
i
:
ι
) →
Fintype
(
κ
i
)
]
(
s
:
Finset
ι
)
(
f
:
Sigma
κ
→
Set
α
)
:
⋂
ij
∈
s
.
sigma
fun (
x
:
ι
) =>
Finset.univ
,
f
ij
=
⋂
i
∈
s
,
⋂ (
j
:
κ
i
),
f
⟨
i
,
j
⟩
source
theorem
Set
.
biInter_finsetSigma_univ'
{
ι
:
Type
u_1}
{
α
:
Type
u_2}
{
κ
:
ι
→
Type
u_3
}
[
(
i
:
ι
) →
Fintype
(
κ
i
)
]
(
s
:
Finset
ι
)
(
f
:
(
i
:
ι
) →
κ
i
→
Set
α
)
:
⋂
i
∈
s
,
⋂ (
j
:
κ
i
),
f
i
j
=
⋂
ij
∈
s
.
sigma
fun (
x
:
ι
) =>
Finset.univ
,
f
ij
.
fst
ij
.
snd
source
instance
Sigma
.
instFintype
{
ι
:
Type
u_1}
{
κ
:
ι
→
Type
u_3
}
[
(
i
:
ι
) →
Fintype
(
κ
i
)
]
[
Fintype
ι
]
:
Fintype
((
i
:
ι
) ×
κ
i
)
Equations
source
instance
PSigma
.
instFintype
{
ι
:
Type
u_1}
{
κ
:
ι
→
Type
u_3
}
[
(
i
:
ι
) →
Fintype
(
κ
i
)
]
[
Fintype
ι
]
:
Fintype
((
i
:
ι
) ×'
κ
i
)
Equations
source
@[simp]
theorem
Finset
.
univ_sigma_univ
{
ι
:
Type
u_1}
{
κ
:
ι
→
Type
u_3
}
[
(
i
:
ι
) →
Fintype
(
κ
i
)
]
[
Fintype
ι
]
:
(
univ
.
sigma
fun (
x
:
ι
) =>
univ
)
=
univ