Documentation

Mathlib.Data.ENNReal.Action

Scalar multiplication on ℝ≥0∞. #

This file defines basic scalar actions on extended nonnegative reals, showing that MulActions, DistribMulActions, Modules and Algebras restrict from ℝ≥0∞ to ℝ≥0.

noncomputable instance ENNReal.instMulActionNNReal {M : Type u_1} [MulAction ENNReal M] :

A MulAction over ℝ≥0∞ restricts to a MulAction over ℝ≥0.

Equations
    theorem ENNReal.smul_def {M : Type u_1} [MulAction ENNReal M] (c : NNReal) (x : M) :
    c x = c x

    A DistribMulAction over ℝ≥0∞ restricts to a DistribMulAction over ℝ≥0.

    Equations
      noncomputable instance ENNReal.instModuleNNReal {M : Type u_1} [AddCommMonoid M] [Module ENNReal M] :

      A Module over ℝ≥0∞ restricts to a Module over ℝ≥0.

      Equations
        noncomputable instance ENNReal.instAlgebraNNReal {A : Type u_1} [Semiring A] [Algebra ENNReal A] :

        An Algebra over ℝ≥0∞ restricts to an Algebra over ℝ≥0.

        Equations
          theorem ENNReal.coe_smul {R : Type u_1} (r : R) (s : NNReal) [SMul R NNReal] [SMul R ENNReal] [IsScalarTower R NNReal NNReal] [IsScalarTower R NNReal ENNReal] :
          ↑(r s) = r s
          theorem ENNReal.nnreal_smul_lt_top {x : NNReal} {y : ENNReal} (hy : y < ) :
          x y <
          theorem ENNReal.nnreal_smul_ne_top {x : NNReal} {y : ENNReal} (hy : y ) :
          x y
          theorem ENNReal.nnreal_smul_ne_top_iff {x : NNReal} {y : ENNReal} (hx : x 0) :
          theorem ENNReal.nnreal_smul_lt_top_iff {x : NNReal} {y : ENNReal} (hx : x 0) :
          x y < y <
          @[simp]
          theorem ENNReal.smul_toNNReal (a : NNReal) (b : ENNReal) :
          (a b).toNNReal = a * b.toNNReal
          theorem ENNReal.toReal_smul (r : NNReal) (s : ENNReal) :
          (r s).toReal = r s.toReal