Documentation

Mathlib.Data.Complex.Norm

Norm on the complex numbers #

Equations
    @[deprecated Complex.norm_mul_self_eq_normSq (since := "2025-02-16")]

    Alias of Complex.norm_mul_self_eq_normSq.

    @[deprecated Complex.abs_re_le_norm (since := "2025-02-16")]

    Alias of Complex.abs_re_le_norm.

    @[deprecated Complex.re_le_norm (since := "2025-02-16")]
    theorem Complex.re_le_abs (z : ) :

    Alias of Complex.re_le_norm.

    @[reducible, inline, deprecated "use the norm instead" (since := "2025-02-16")]
    noncomputable abbrev Complex.abs (z : ) :

    The complex absolute value function, defined as the Complex norm.

    Equations
      Instances For
        @[deprecated Complex.norm_def (since := "2025-02-16")]
        theorem Complex.abs_apply (z : ) :

        Alias of Complex.norm_def.

        @[simp]
        theorem Complex.norm_mul (z w : ) :
        @[simp]
        theorem Complex.norm_div (z w : ) :
        theorem Complex.norm_pow (z : ) (n : ) :
        z ^ n = z ^ n
        theorem Complex.norm_zpow (z : ) (n : ) :
        z ^ n = z ^ n
        theorem Complex.norm_prod {ι : Type u_1} (s : Finset ι) (f : ι) :
        s.prod f = is, f i
        @[deprecated Complex.norm_pow (since := "2025-02-16")]
        theorem Complex.abs_pow (z : ) (n : ) :
        z ^ n = z ^ n

        Alias of Complex.norm_pow.

        @[deprecated Complex.norm_zpow (since := "2025-02-16")]
        theorem Complex.abs_zpow (z : ) (n : ) :
        z ^ n = z ^ n

        Alias of Complex.norm_zpow.

        @[deprecated Complex.norm_prod (since := "2025-02-16")]
        theorem Complex.abs_prod {ι : Type u_1} (s : Finset ι) (f : ι) :
        s.prod f = is, f i

        Alias of Complex.norm_prod.

        @[deprecated Complex.norm_conj (since := "2025-02-16")]

        Alias of Complex.norm_conj.

        @[deprecated abs_norm (since := "2025-02-16")]
        theorem Complex.abs_abs {E : Type u_5} [SeminormedAddGroup E] (z : E) :

        Alias of abs_norm.

        @[simp]
        @[deprecated Complex.norm_I (since := "2025-02-16")]

        Alias of Complex.norm_I.

        @[simp]
        theorem Complex.norm_real (r : ) :
        theorem Complex.norm_of_nonneg {r : } (h : 0 r) :
        r = r
        @[deprecated Complex.norm_real (since := "2025-02-16")]
        theorem Complex.abs_ofReal (r : ) :

        Alias of Complex.norm_real.

        @[deprecated Complex.norm_of_nonneg (since := "2025-02-16")]
        theorem Complex.abs_of_nonneg {r : } (h : 0 r) :
        r = r

        Alias of Complex.norm_of_nonneg.

        @[simp]
        @[simp]
        theorem Complex.norm_natCast (n : ) :
        n = n
        @[simp]
        theorem Complex.nnnorm_natCast (n : ) :
        n‖₊ = n
        @[deprecated Complex.norm_natCast (since := "2025-02-16")]
        theorem Complex.abs_natCast (n : ) :
        n = n

        Alias of Complex.norm_natCast.

        @[deprecated Complex.norm_ofNat (since := "2025-02-16")]

        Alias of Complex.norm_ofNat.

        @[deprecated Complex.norm_two (since := "2025-02-16")]

        Alias of Complex.norm_two.

        @[simp]
        theorem Complex.norm_intCast (n : ) :
        n = |n|
        theorem Complex.norm_int_of_nonneg {n : } (hn : 0 n) :
        n = n
        @[simp]
        theorem Complex.norm_ratCast (q : ) :
        q = |q|
        @[simp]
        theorem Complex.norm_nnratCast (q : ℚ≥0) :
        q = q
        @[simp]
        @[simp]
        @[deprecated Complex.norm_intCast (since := "2025-02-16")]
        theorem Complex.abs_intCast (n : ) :
        n = |n|

        Alias of Complex.norm_intCast.

        @[simp]
        theorem Complex.sq_norm_sub_sq_re (z : ) :
        z ^ 2 - z.re ^ 2 = z.im ^ 2
        @[simp]
        theorem Complex.sq_norm_sub_sq_im (z : ) :
        z ^ 2 - z.im ^ 2 = z.re ^ 2
        theorem Complex.norm_add_mul_I (x y : ) :
        x + y * I = (x ^ 2 + y ^ 2)
        @[deprecated Complex.normSq_eq_norm_sq (since := "2025-02-16")]

        Alias of Complex.normSq_eq_norm_sq.

        @[deprecated Complex.sq_norm (since := "2025-02-16")]
        theorem Complex.sq_abs (z : ) :

        Alias of Complex.sq_norm.

        @[deprecated Complex.sq_norm_sub_sq_re (since := "2025-02-16")]
        theorem Complex.sq_abs_sub_sq_re (z : ) :
        z ^ 2 - z.re ^ 2 = z.im ^ 2

        Alias of Complex.sq_norm_sub_sq_re.

        @[deprecated Complex.sq_norm_sub_sq_im (since := "2025-02-16")]
        theorem Complex.sq_abs_sub_sq_im (z : ) :
        z ^ 2 - z.im ^ 2 = z.re ^ 2

        Alias of Complex.sq_norm_sub_sq_im.

        @[deprecated Complex.norm_add_mul_I (since := "2025-02-16")]
        theorem Complex.abs_add_mul_I (x y : ) :
        x + y * I = (x ^ 2 + y ^ 2)

        Alias of Complex.norm_add_mul_I.

        @[deprecated Complex.norm_eq_sqrt_sq_add_sq (since := "2025-02-16")]
        theorem Complex.abs_eq_sqrt_sq_add_sq (z : ) :
        z = (z.re ^ 2 + z.im ^ 2)

        Alias of Complex.norm_eq_sqrt_sq_add_sq.

        @[simp]
        theorem Complex.range_norm :
        (Set.range fun (x : ) => x) = Set.Ici 0
        @[deprecated Complex.range_norm (since := "2025-02-16")]
        theorem Complex.range_abs :
        (Set.range fun (x : ) => x) = Set.Ici 0

        Alias of Complex.range_norm.

        @[simp]
        @[simp]
        @[simp]
        theorem Complex.abs_re_eq_norm {z : } :
        |z.re| = z z.im = 0
        @[simp]
        theorem Complex.abs_im_eq_norm {z : } :
        |z.im| = z z.re = 0
        @[deprecated Complex.norm_le_abs_re_add_abs_im (since := "2025-02-16")]

        Alias of Complex.norm_le_abs_re_add_abs_im.

        @[deprecated Complex.abs_im_le_norm (since := "2025-02-16")]

        Alias of Complex.abs_im_le_norm.

        @[deprecated Complex.im_le_norm (since := "2025-02-16")]
        theorem Complex.im_le_abs (z : ) :

        Alias of Complex.im_le_norm.

        @[deprecated Complex.abs_re_lt_norm (since := "2025-02-16")]
        theorem Complex.abs_re_lt_abs {z : } :

        Alias of Complex.abs_re_lt_norm.

        @[deprecated Complex.abs_im_lt_norm (since := "2025-02-16")]
        theorem Complex.abs_im_lt_abs {z : } :

        Alias of Complex.abs_im_lt_norm.

        @[deprecated Complex.abs_re_eq_norm (since := "2025-02-16")]
        theorem Complex.abs_re_eq_abs {z : } :
        |z.re| = z z.im = 0

        Alias of Complex.abs_re_eq_norm.

        @[deprecated Complex.abs_im_eq_norm (since := "2025-02-16")]
        theorem Complex.abs_im_eq_abs {z : } :
        |z.im| = z z.re = 0

        Alias of Complex.abs_im_eq_norm.

        @[deprecated Complex.norm_le_sqrt_two_mul_max (since := "2025-02-16")]

        Alias of Complex.norm_le_sqrt_two_mul_max.

        @[deprecated Complex.abs_re_div_norm_le_one (since := "2025-02-16")]

        Alias of Complex.abs_re_div_norm_le_one.

        @[deprecated Complex.abs_im_div_norm_le_one (since := "2025-02-16")]

        Alias of Complex.abs_im_div_norm_le_one.

        theorem Complex.dist_eq (z w : ) :
        dist z w = z - w
        theorem Complex.dist_eq_re_im (z w : ) :
        dist z w = ((z.re - w.re) ^ 2 + (z.im - w.im) ^ 2)
        @[simp]
        theorem Complex.dist_mk (x₁ y₁ x₂ y₂ : ) :
        dist { re := x₁, im := y₁ } { re := x₂, im := y₂ } = ((x₁ - x₂) ^ 2 + (y₁ - y₂) ^ 2)
        theorem Complex.dist_of_re_eq {z w : } (h : z.re = w.re) :
        dist z w = dist z.im w.im
        theorem Complex.nndist_of_re_eq {z w : } (h : z.re = w.re) :
        nndist z w = nndist z.im w.im
        theorem Complex.edist_of_re_eq {z w : } (h : z.re = w.re) :
        edist z w = edist z.im w.im
        theorem Complex.dist_of_im_eq {z w : } (h : z.im = w.im) :
        dist z w = dist z.re w.re
        theorem Complex.nndist_of_im_eq {z w : } (h : z.im = w.im) :
        nndist z w = nndist z.re w.re
        theorem Complex.edist_of_im_eq {z w : } (h : z.im = w.im) :
        edist z w = edist z.re w.re

        Cauchy sequences #

        theorem Complex.isCauSeq_re (f : CauSeq fun (x : ) => x) :
        IsCauSeq abs fun (n : ) => (f n).re
        theorem Complex.isCauSeq_im (f : CauSeq fun (x : ) => x) :
        IsCauSeq abs fun (n : ) => (f n).im
        noncomputable def Complex.cauSeqRe (f : CauSeq fun (x : ) => x) :

        The real part of a complex Cauchy sequence, as a real Cauchy sequence.

        Equations
          Instances For
            noncomputable def Complex.cauSeqIm (f : CauSeq fun (x : ) => x) :

            The imaginary part of a complex Cauchy sequence, as a real Cauchy sequence.

            Equations
              Instances For
                theorem Complex.isCauSeq_norm {f : } (hf : IsCauSeq (fun (x : ) => x) f) :
                IsCauSeq abs ((fun (x : ) => x) f)
                noncomputable def Complex.limAux (f : CauSeq fun (x : ) => x) :

                The limit of a Cauchy sequence of complex numbers.

                Equations
                  Instances For
                    theorem Complex.equiv_limAux (f : CauSeq fun (x : ) => x) :
                    f CauSeq.const (fun (x : ) => x) (limAux f)
                    theorem Complex.lim_eq_lim_im_add_lim_re (f : CauSeq fun (x : ) => x) :
                    f.lim = (cauSeqRe f).lim + (cauSeqIm f).lim * I
                    theorem Complex.lim_re (f : CauSeq fun (x : ) => x) :
                    theorem Complex.lim_im (f : CauSeq fun (x : ) => x) :
                    theorem Complex.isCauSeq_conj (f : CauSeq fun (x : ) => x) :
                    IsCauSeq (fun (x : ) => x) fun (n : ) => (starRingEnd ) (f n)
                    noncomputable def Complex.cauSeqConj (f : CauSeq fun (x : ) => x) :
                    CauSeq fun (x : ) => x

                    The complex conjugate of a complex Cauchy sequence, as a complex Cauchy sequence.

                    Equations
                      Instances For
                        noncomputable def Complex.cauSeqNorm (f : CauSeq fun (x : ) => x) :

                        The norm of a complex Cauchy sequence, as a real Cauchy sequence.

                        Equations
                          Instances For
                            theorem Complex.lim_norm (f : CauSeq fun (x : ) => x) :
                            @[deprecated Complex.isCauSeq_norm (since := "2025-02-16")]
                            theorem Complex.isCauSeq_abs {f : } (hf : IsCauSeq (fun (x : ) => x) f) :
                            IsCauSeq abs ((fun (x : ) => x) f)

                            Alias of Complex.isCauSeq_norm.

                            @[deprecated Complex.cauSeqNorm (since := "2025-02-16")]
                            def Complex.cauSeqAbs (f : CauSeq fun (x : ) => x) :

                            Alias of Complex.cauSeqNorm.


                            The norm of a complex Cauchy sequence, as a real Cauchy sequence.

                            Equations
                              Instances For
                                @[deprecated Complex.lim_norm (since := "2025-02-16")]
                                theorem Complex.lim_abs (f : CauSeq fun (x : ) => x) :

                                Alias of Complex.lim_norm.

                                theorem Complex.ne_zero_of_re_pos {s : } (hs : 0 < s.re) :
                                s 0
                                theorem Complex.ne_zero_of_one_lt_re {s : } (hs : 1 < s.re) :
                                s 0
                                theorem Complex.re_neg_ne_zero_of_re_pos {s : } (hs : 0 < s.re) :
                                (-s).re 0
                                theorem Complex.re_neg_ne_zero_of_one_lt_re {s : } (hs : 1 < s.re) :
                                (-s).re 0