Documentation

Mathlib.Algebra.Polynomial.Coeff

Theory of univariate polynomials #

The theorems include formulas for computing coefficients, such as coeff_add, coeff_sum, coeff_mul

@[simp]
theorem Polynomial.coeff_add {R : Type u} [Semiring R] (p q : Polynomial R) (n : ) :
(p + q).coeff n = p.coeff n + q.coeff n
@[simp]
theorem Polynomial.coeff_smul {R : Type u} {S : Type v} [Semiring R] [SMulZeroClass S R] (r : S) (p : Polynomial R) (n : ) :
(r p).coeff n = r p.coeff n
theorem Polynomial.support_smul {R : Type u} {S : Type v} [Semiring R] [SMulZeroClass S R] (r : S) (p : Polynomial R) :
def Polynomial.lsum {R : Type u_1} {A : Type u_2} {M : Type u_3} [Semiring R] [Semiring A] [AddCommMonoid M] [Module R A] [Module R M] (f : A →ₗ[R] M) :

Polynomial.sum as a linear map.

Equations
    Instances For
      @[simp]
      theorem Polynomial.lsum_apply {R : Type u_1} {A : Type u_2} {M : Type u_3} [Semiring R] [Semiring A] [AddCommMonoid M] [Module R A] [Module R M] (f : A →ₗ[R] M) (p : Polynomial A) :
      (lsum f) p = p.sum fun (x1 : ) (x2 : A) => (f x1) x2

      The nth coefficient, as a linear map.

      Equations
        Instances For
          @[simp]
          theorem Polynomial.lcoeff_apply {R : Type u} [Semiring R] (n : ) (f : Polynomial R) :
          (lcoeff R n) f = f.coeff n
          @[simp]
          theorem Polynomial.finset_sum_coeff {R : Type u} [Semiring R] {ι : Type u_1} (s : Finset ι) (f : ιPolynomial R) (n : ) :
          (∑ bs, f b).coeff n = bs, (f b).coeff n
          theorem Polynomial.coeff_list_sum {R : Type u} [Semiring R] (l : List (Polynomial R)) (n : ) :
          l.sum.coeff n = (List.map (⇑(lcoeff R n)) l).sum
          theorem Polynomial.coeff_list_sum_map {R : Type u} [Semiring R] {ι : Type u_1} (l : List ι) (f : ιPolynomial R) (n : ) :
          (List.map f l).sum.coeff n = (List.map (fun (a : ι) => (f a).coeff n) l).sum
          @[simp]
          theorem Polynomial.coeff_sum {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (n : ) (f : RPolynomial S) :
          (p.sum f).coeff n = p.sum fun (a : ) (b : R) => (f a b).coeff n
          theorem Polynomial.coeff_mul {R : Type u} [Semiring R] (p q : Polynomial R) (n : ) :
          (p * q).coeff n = xFinset.antidiagonal n, p.coeff x.1 * q.coeff x.2

          Decomposes the coefficient of the product p * q as a sum over antidiagonal. A version which sums over range (n + 1) can be obtained by using Finset.Nat.sum_antidiagonal_eq_sum_range_succ.

          @[simp]
          theorem Polynomial.mul_coeff_zero {R : Type u} [Semiring R] (p q : Polynomial R) :
          (p * q).coeff 0 = p.coeff 0 * q.coeff 0
          theorem Polynomial.mul_coeff_one {R : Type u} [Semiring R] (p q : Polynomial R) :
          (p * q).coeff 1 = p.coeff 0 * q.coeff 1 + p.coeff 1 * q.coeff 0

          constantCoeff p returns the constant term of the polynomial p, defined as coeff p 0. This is a ring homomorphism.

          Equations
            Instances For
              theorem Polynomial.isUnit_C {R : Type u} [Semiring R] {x : R} :
              theorem Polynomial.coeff_mul_X_zero {R : Type u} [Semiring R] (p : Polynomial R) :
              (p * X).coeff 0 = 0
              theorem Polynomial.coeff_X_mul_zero {R : Type u} [Semiring R] (p : Polynomial R) :
              (X * p).coeff 0 = 0
              theorem Polynomial.coeff_C_mul_X_pow {R : Type u} [Semiring R] (x : R) (k n : ) :
              (C x * X ^ k).coeff n = if n = k then x else 0
              theorem Polynomial.coeff_C_mul_X {R : Type u} [Semiring R] (x : R) (n : ) :
              (C x * X).coeff n = if n = 1 then x else 0
              @[simp]
              theorem Polynomial.coeff_C_mul {R : Type u} {a : R} {n : } [Semiring R] (p : Polynomial R) :
              (C a * p).coeff n = a * p.coeff n
              theorem Polynomial.C_mul' {R : Type u} [Semiring R] (a : R) (f : Polynomial R) :
              C a * f = a f
              @[simp]
              theorem Polynomial.coeff_mul_C {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (a : R) :
              (p * C a).coeff n = p.coeff n * a
              @[simp]
              theorem Polynomial.coeff_mul_natCast {R : Type u} [Semiring R] {p : Polynomial R} {a k : } :
              (p * a).coeff k = p.coeff k * a
              @[simp]
              theorem Polynomial.coeff_natCast_mul {R : Type u} [Semiring R] {p : Polynomial R} {a k : } :
              (a * p).coeff k = a * p.coeff k
              @[simp]
              theorem Polynomial.coeff_mul_ofNat {R : Type u} [Semiring R] {p : Polynomial R} {a k : } [a.AtLeastTwo] :
              @[simp]
              theorem Polynomial.coeff_ofNat_mul {R : Type u} [Semiring R] {p : Polynomial R} {a k : } [a.AtLeastTwo] :
              @[simp]
              theorem Polynomial.coeff_mul_intCast {S : Type v} [Ring S] {p : Polynomial S} {a : } {k : } :
              (p * a).coeff k = p.coeff k * a
              @[simp]
              theorem Polynomial.coeff_intCast_mul {S : Type v} [Ring S] {p : Polynomial S} {a : } {k : } :
              (a * p).coeff k = a * p.coeff k
              @[simp]
              theorem Polynomial.coeff_X_pow {R : Type u} [Semiring R] (k n : ) :
              (X ^ k).coeff n = if n = k then 1 else 0
              theorem Polynomial.coeff_X_pow_self {R : Type u} [Semiring R] (n : ) :
              (X ^ n).coeff n = 1
              theorem Polynomial.support_binomial {R : Type u} [Semiring R] {k m : } (hkm : k m) {x y : R} (hx : x 0) (hy : y 0) :
              (C x * X ^ k + C y * X ^ m).support = {k, m}
              theorem Polynomial.support_trinomial {R : Type u} [Semiring R] {k m n : } (hkm : k < m) (hmn : m < n) {x y z : R} (hx : x 0) (hy : y 0) (hz : z 0) :
              (C x * X ^ k + C y * X ^ m + C z * X ^ n).support = {k, m, n}
              theorem Polynomial.card_support_binomial {R : Type u} [Semiring R] {k m : } (h : k m) {x y : R} (hx : x 0) (hy : y 0) :
              (C x * X ^ k + C y * X ^ m).support.card = 2
              theorem Polynomial.card_support_trinomial {R : Type u} [Semiring R] {k m n : } (hkm : k < m) (hmn : m < n) {x y z : R} (hx : x 0) (hy : y 0) (hz : z 0) :
              (C x * X ^ k + C y * X ^ m + C z * X ^ n).support.card = 3
              @[simp]
              theorem Polynomial.coeff_mul_X_pow {R : Type u} [Semiring R] (p : Polynomial R) (n d : ) :
              (p * X ^ n).coeff (d + n) = p.coeff d
              @[simp]
              theorem Polynomial.coeff_X_pow_mul {R : Type u} [Semiring R] (p : Polynomial R) (n d : ) :
              (X ^ n * p).coeff (d + n) = p.coeff d
              theorem Polynomial.coeff_mul_X_pow' {R : Type u} [Semiring R] (p : Polynomial R) (n d : ) :
              (p * X ^ n).coeff d = if n d then p.coeff (d - n) else 0
              theorem Polynomial.coeff_X_pow_mul' {R : Type u} [Semiring R] (p : Polynomial R) (n d : ) :
              (X ^ n * p).coeff d = if n d then p.coeff (d - n) else 0
              @[simp]
              theorem Polynomial.coeff_mul_X {R : Type u} [Semiring R] (p : Polynomial R) (n : ) :
              (p * X).coeff (n + 1) = p.coeff n
              @[simp]
              theorem Polynomial.coeff_X_mul {R : Type u} [Semiring R] (p : Polynomial R) (n : ) :
              (X * p).coeff (n + 1) = p.coeff n
              theorem Polynomial.coeff_mul_monomial {R : Type u} [Semiring R] (p : Polynomial R) (n d : ) (r : R) :
              (p * (monomial n) r).coeff (d + n) = p.coeff d * r
              theorem Polynomial.coeff_monomial_mul {R : Type u} [Semiring R] (p : Polynomial R) (n d : ) (r : R) :
              ((monomial n) r * p).coeff (d + n) = r * p.coeff d
              theorem Polynomial.coeff_mul_monomial_zero {R : Type u} [Semiring R] (p : Polynomial R) (d : ) (r : R) :
              (p * (monomial 0) r).coeff d = p.coeff d * r
              theorem Polynomial.coeff_monomial_zero_mul {R : Type u} [Semiring R] (p : Polynomial R) (d : ) (r : R) :
              ((monomial 0) r * p).coeff d = r * p.coeff d
              theorem Polynomial.mul_X_pow_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} {n : } (H : p * X ^ n = 0) :
              p = 0
              theorem Polynomial.coeff_X_add_C_pow {R : Type u} [Semiring R] (r : R) (n k : ) :
              ((X + C r) ^ n).coeff k = r ^ (n - k) * (n.choose k)
              theorem Polynomial.coeff_X_add_one_pow (R : Type u_1) [Semiring R] (n k : ) :
              ((X + 1) ^ n).coeff k = (n.choose k)
              theorem Polynomial.coeff_one_add_X_pow (R : Type u_1) [Semiring R] (n k : ) :
              ((1 + X) ^ n).coeff k = (n.choose k)
              theorem Polynomial.C_dvd_iff_dvd_coeff {R : Type u} [Semiring R] (r : R) (φ : Polynomial R) :
              C r φ ∀ (i : ), r φ.coeff i
              theorem Polynomial.smul_eq_C_mul {R : Type u} [Semiring R] {p : Polynomial R} (a : R) :
              a p = C a * p
              theorem Polynomial.update_eq_add_sub_coeff {R : Type u_1} [Ring R] (p : Polynomial R) (n : ) (a : R) :
              p.update n a = p + C (a - p.coeff n) * X ^ n
              theorem Polynomial.natCast_coeff_zero {n : } {R : Type u_1} [Semiring R] :
              (↑n).coeff 0 = n
              theorem Polynomial.natCast_inj {m n : } {R : Type u_1} [Semiring R] [CharZero R] :
              m = n m = n
              @[simp]
              theorem Polynomial.intCast_coeff_zero {i : } {R : Type u_1} [Ring R] :
              (↑i).coeff 0 = i
              theorem Polynomial.intCast_inj {m n : } {R : Type u_1} [Ring R] [CharZero R] :
              m = n m = n
              instance Polynomial.charP {R : Type u} [Semiring R] {p : } [CharP R p] :