Documentation

Mathlib.Algebra.Order.Ring.WithTop

Structures involving * and 0 on WithTop and WithBot #

The main results of this section are WithTop.instOrderedCommSemiring and WithBot.instOrderedCommSemiring.

@[simp]
theorem WithTop.coe_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a b : α) :
↑(a * b) = a * b
theorem WithTop.mul_top' {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a : WithTop α) :
a * = if a = 0 then 0 else
@[simp]
theorem WithTop.mul_top {α : Type u_1} [DecidableEq α] [MulZeroClass α] {a : WithTop α} (h : a 0) :
theorem WithTop.top_mul' {α : Type u_1} [DecidableEq α] [MulZeroClass α] (b : WithTop α) :
* b = if b = 0 then 0 else
@[simp]
theorem WithTop.top_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] {b : WithTop α} (hb : b 0) :
@[simp]
theorem WithTop.top_mul_top {α : Type u_1} [DecidableEq α] [MulZeroClass α] :
theorem WithTop.mul_def {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a b : WithTop α) :
a * b = if a = 0 b = 0 then 0 else map₂ (fun (x1 x2 : α) => x1 * x2) a b
theorem WithTop.mul_eq_top_iff {α : Type u_1} [DecidableEq α] [MulZeroClass α] {a b : WithTop α} :
a * b = a 0 b = a = b 0
theorem WithTop.mul_coe_eq_bind {α : Type u_1} [DecidableEq α] [MulZeroClass α] {b : α} (hb : b 0) (a : WithTop α) :
a * b = Option.bind a fun (a : α) => Option.some (a * b)
theorem WithTop.coe_mul_eq_bind {α : Type u_1} [DecidableEq α] [MulZeroClass α] {a : α} (ha : a 0) (b : WithTop α) :
a * b = Option.bind b fun (b : α) => Option.some (a * b)
@[simp]
theorem WithTop.untopD_zero_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a b : WithTop α) :
untopD 0 (a * b) = untopD 0 a * untopD 0 b
@[deprecated WithTop.untopD_zero_mul (since := "2025-02-06")]
theorem WithTop.untop'_zero_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a b : WithTop α) :
untopD 0 (a * b) = untopD 0 a * untopD 0 b

Alias of WithTop.untopD_zero_mul.

theorem WithTop.mul_ne_top {α : Type u_1} [DecidableEq α] [MulZeroClass α] {a b : WithTop α} (ha : a ) (hb : b ) :
a * b
theorem WithTop.mul_lt_top {α : Type u_1} [DecidableEq α] [MulZeroClass α] [LT α] {a b : WithTop α} (ha : a < ) (hb : b < ) :
a * b <

Nontrivial α is needed here as otherwise we have 1 * ⊤ = ⊤ but also 0 * ⊤ = 0.

Equations

    A version of WithTop.map for MonoidWithZeroHoms.

    Equations
      Instances For
        @[simp]
        theorem WithTop.coe_pow {α : Type u_1} [DecidableEq α] [MonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] (a : α) (n : ) :
        ↑(a ^ n) = a ^ n
        @[simp]
        theorem WithTop.top_pow {α : Type u_1} [DecidableEq α] [MonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] {n : } :
        n 0 ^ n =
        @[simp]
        theorem WithTop.pow_eq_top_iff {α : Type u_1} [DecidableEq α] [MonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] {x : WithTop α} {n : } :
        x ^ n = x = n 0
        theorem WithTop.pow_ne_top_iff {α : Type u_1} [DecidableEq α] [MonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] {x : WithTop α} {n : } :
        x ^ n x n = 0
        @[simp]
        theorem WithTop.pow_lt_top_iff {α : Type u_1} [DecidableEq α] [MonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] {x : WithTop α} {n : } [Preorder α] :
        x ^ n < x < n = 0
        theorem WithTop.eq_top_of_pow {α : Type u_1} [DecidableEq α] [MonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] {x : WithTop α} (n : ) (hx : x ^ n = ) :
        x =
        theorem WithTop.pow_ne_top {α : Type u_1} [DecidableEq α] [MonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] {x : WithTop α} {n : } (hx : x ) :
        x ^ n
        theorem WithTop.pow_lt_top {α : Type u_1} [DecidableEq α] [MonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] {x : WithTop α} {n : } [Preorder α] (hx : x < ) :
        x ^ n <
        theorem WithTop.mul_lt_mul {α : Type u_1} [DecidableEq α] [CommSemiring α] [PartialOrder α] [OrderBot α] [CanonicallyOrderedAdd α] [PosMulStrictMono α] {a₁ a₂ b₁ b₂ : WithTop α} (ha : a₁ < a₂) (hb : b₁ < b₂) :
        a₁ * b₁ < a₂ * b₂
        theorem WithTop.pow_lt_pow_left {α : Type u_1} [DecidableEq α] [CommSemiring α] [PartialOrder α] [OrderBot α] [CanonicallyOrderedAdd α] [PosMulStrictMono α] [NoZeroDivisors α] [Nontrivial α] {a b : WithTop α} (hab : a < b) {n : } (hn : n 0) :
        a ^ n < b ^ n
        @[simp]
        theorem WithBot.coe_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a b : α) :
        ↑(a * b) = a * b
        theorem WithBot.mul_bot' {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a : WithBot α) :
        a * = if a = 0 then 0 else
        @[simp]
        theorem WithBot.mul_bot {α : Type u_1} [DecidableEq α] [MulZeroClass α] {a : WithBot α} (h : a 0) :
        theorem WithBot.bot_mul' {α : Type u_1} [DecidableEq α] [MulZeroClass α] (b : WithBot α) :
        * b = if b = 0 then 0 else
        @[simp]
        theorem WithBot.bot_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] {b : WithBot α} (hb : b 0) :
        @[simp]
        theorem WithBot.bot_mul_bot {α : Type u_1} [DecidableEq α] [MulZeroClass α] :
        theorem WithBot.mul_def {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a b : WithBot α) :
        a * b = if a = 0 b = 0 then 0 else map₂ (fun (x1 x2 : α) => x1 * x2) a b
        theorem WithBot.mul_eq_bot_iff {α : Type u_1} [DecidableEq α] [MulZeroClass α] {a b : WithBot α} :
        a * b = a 0 b = a = b 0
        theorem WithBot.mul_coe_eq_bind {α : Type u_1} [DecidableEq α] [MulZeroClass α] {b : α} (hb : b 0) (a : WithBot α) :
        a * b = Option.bind a fun (a : α) => Option.some (a * b)
        theorem WithBot.coe_mul_eq_bind {α : Type u_1} [DecidableEq α] [MulZeroClass α] {a : α} (ha : a 0) (b : WithBot α) :
        a * b = Option.bind b fun (b : α) => Option.some (a * b)
        @[simp]
        theorem WithBot.unbotD_zero_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a b : WithBot α) :
        unbotD 0 (a * b) = unbotD 0 a * unbotD 0 b
        @[deprecated WithBot.unbotD_zero_mul (since := "2025-02-06")]
        theorem WithBot.unbot'_zero_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a b : WithBot α) :
        unbotD 0 (a * b) = unbotD 0 a * unbotD 0 b

        Alias of WithBot.unbotD_zero_mul.

        theorem WithBot.mul_ne_bot {α : Type u_1} [DecidableEq α] [MulZeroClass α] {a b : WithBot α} (ha : a ) (hb : b ) :
        a * b
        theorem WithBot.bot_lt_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] [LT α] {a b : WithBot α} (ha : < a) (hb : < b) :
        < a * b

        Nontrivial α is needed here as otherwise we have 1 * ⊥ = ⊥ but also = 0 * ⊥ = 0.

        Equations
          @[simp]
          theorem WithBot.coe_pow {α : Type u_1} [DecidableEq α] [MonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] (a : α) (n : ) :
          ↑(a ^ n) = a ^ n