Documentation

Mathlib.Algebra.Order.Positive.Ring

Algebraic structures on the set of positive numbers #

In this file we define various instances (AddSemigroup, OrderedCommMonoid etc) on the type {x : R // 0 < x}. In each case we try to require the weakest possible typeclass assumptions on R but possibly, there is a room for improvements.

@[simp]
theorem Positive.coe_add {M : Type u_1} [AddMonoid M] [Preorder M] [AddLeftStrictMono M] (x y : { x : M // 0 < x }) :
↑(x + y) = x + y
Equations
    @[simp]
    theorem Positive.val_mul {R : Type u_2} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] (x y : { x : R // 0 < x }) :
    ↑(x * y) = x * y
    @[simp]
    theorem Positive.val_pow {R : Type u_2} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] (x : { x : R // 0 < x }) (n : ) :
    ↑(x ^ n) = x ^ n
    @[simp]
    theorem Positive.val_one {R : Type u_2} [Semiring R] [PartialOrder R] [IsStrictOrderedRing R] :
    1 = 1
    Equations

      If R is a nontrivial linear ordered commutative semiring, then {x : R // 0 < x} is a linear ordered cancellative commutative monoid.