Documentation

Mathlib.Algebra.Order.Monoid.Units

Units in ordered monoids #

instance Units.instPreorder {α : Type u_1} [Monoid α] [Preorder α] :
Equations
    instance AddUnits.instPreorder {α : Type u_1} [AddMonoid α] [Preorder α] :
    Equations
      @[simp]
      theorem Units.val_le_val {α : Type u_1} [Monoid α] [Preorder α] {a b : αˣ} :
      a b a b
      @[simp]
      theorem AddUnits.val_le_val {α : Type u_1} [AddMonoid α] [Preorder α] {a b : AddUnits α} :
      a b a b
      @[simp]
      theorem Units.val_lt_val {α : Type u_1} [Monoid α] [Preorder α] {a b : αˣ} :
      a < b a < b
      @[simp]
      theorem AddUnits.val_lt_val {α : Type u_1} [AddMonoid α] [Preorder α] {a b : AddUnits α} :
      a < b a < b
      Equations
        instance Units.instLinearOrder {α : Type u_1} [Monoid α] [LinearOrder α] :
        Equations
          Equations
            def Units.orderEmbeddingVal {α : Type u_1} [Monoid α] [LinearOrder α] :
            αˣ ↪o α

            val : αˣ → α as an order embedding.

            Equations
              Instances For

                val : add_units α → α as an order embedding.

                Equations
                  Instances For
                    @[simp]
                    theorem Units.max_val {α : Type u_1} [Monoid α] [LinearOrder α] {a b : αˣ} :
                    (max a b) = max a b
                    @[simp]
                    theorem AddUnits.max_val {α : Type u_1} [AddMonoid α] [LinearOrder α] {a b : AddUnits α} :
                    (max a b) = max a b
                    @[simp]
                    theorem Units.min_val {α : Type u_1} [Monoid α] [LinearOrder α] {a b : αˣ} :
                    (min a b) = min a b
                    @[simp]
                    theorem AddUnits.min_val {α : Type u_1} [AddMonoid α] [LinearOrder α] {a b : AddUnits α} :
                    (min a b) = min a b