Subgroups in a group with zero #
@[simp]
theorem
Subgroup.smul_mem_pointwise_smul_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{a : G₀}
(ha : a ≠ 0)
(S : Subgroup G)
(x : G)
:
theorem
Subgroup.mem_pointwise_smul_iff_inv_smul_mem₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{a : G₀}
(ha : a ≠ 0)
(S : Subgroup G)
(x : G)
:
theorem
Subgroup.mem_inv_pointwise_smul_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{a : G₀}
(ha : a ≠ 0)
(S : Subgroup G)
(x : G)
:
@[simp]
theorem
Subgroup.pointwise_smul_le_pointwise_smul_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{S T : Subgroup G}
{a : G₀}
(ha : a ≠ 0)
:
theorem
Subgroup.pointwise_smul_le_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{S T : Subgroup G}
{a : G₀}
(ha : a ≠ 0)
:
theorem
Subgroup.le_pointwise_smul_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{S T : Subgroup G}
{a : G₀}
(ha : a ≠ 0)
:
def
AddSubgroup.pointwiseMulAction
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
:
MulAction M (AddSubgroup A)
The action on an additive subgroup corresponding to applying the action to every element.
This is available as an instance in the Pointwise
locale.
Equations
Instances For
theorem
AddSubgroup.pointwise_smul_def
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
{a : M}
(S : AddSubgroup A)
:
@[simp]
theorem
AddSubgroup.coe_pointwise_smul
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
(a : M)
(S : AddSubgroup A)
:
@[simp]
theorem
AddSubgroup.pointwise_smul_toAddSubmonoid
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
(a : M)
(S : AddSubgroup A)
:
theorem
AddSubgroup.smul_mem_pointwise_smul
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
(m : A)
(a : M)
(S : AddSubgroup A)
:
theorem
AddSubgroup.mem_smul_pointwise_iff_exists
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
(m : A)
(a : M)
(S : AddSubgroup A)
:
instance
AddSubgroup.pointwise_isCentralScalar
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
[DistribMulAction Mᵐᵒᵖ A]
[IsCentralScalar M A]
:
IsCentralScalar M (AddSubgroup A)
@[simp]
theorem
AddSubgroup.smul_mem_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S : AddSubgroup A}
{a : G}
{x : A}
:
theorem
AddSubgroup.mem_pointwise_smul_iff_inv_smul_mem
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S : AddSubgroup A}
{a : G}
{x : A}
:
theorem
AddSubgroup.mem_inv_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S : AddSubgroup A}
{a : G}
{x : A}
:
@[simp]
theorem
AddSubgroup.pointwise_smul_le_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S T : AddSubgroup A}
{a : G}
:
theorem
AddSubgroup.pointwise_smul_le_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S T : AddSubgroup A}
{a : G}
:
theorem
AddSubgroup.le_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S T : AddSubgroup A}
{a : G}
:
@[simp]
theorem
AddSubgroup.smul_mem_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{a : G₀}
(ha : a ≠ 0)
(S : AddSubgroup A)
(x : A)
:
theorem
AddSubgroup.mem_pointwise_smul_iff_inv_smul_mem₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{a : G₀}
(ha : a ≠ 0)
(S : AddSubgroup A)
(x : A)
:
theorem
AddSubgroup.mem_inv_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{a : G₀}
(ha : a ≠ 0)
(S : AddSubgroup A)
(x : A)
:
@[simp]
theorem
AddSubgroup.pointwise_smul_le_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{S T : AddSubgroup A}
{a : G₀}
(ha : a ≠ 0)
:
theorem
AddSubgroup.pointwise_smul_le_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{S T : AddSubgroup A}
{a : G₀}
(ha : a ≠ 0)
:
theorem
AddSubgroup.le_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{S T : AddSubgroup A}
{a : G₀}
(ha : a ≠ 0)
: