Documentation

Mathlib.Algebra.GroupWithZero.Prod

Products of monoids with zero, groups with zero #

In this file we define MonoidWithZero, GroupWithZero, etc... instances for M₀ × N₀.

Main declarations #

instance Prod.instMulZeroClass {M₀ : Type u_1} {N₀ : Type u_2} [MulZeroClass M₀] [MulZeroClass N₀] :
MulZeroClass (M₀ × N₀)
Equations
    instance Prod.instSemigroupWithZero {M₀ : Type u_1} {N₀ : Type u_2} [SemigroupWithZero M₀] [SemigroupWithZero N₀] :
    SemigroupWithZero (M₀ × N₀)
    Equations
      instance Prod.instMulZeroOneClass {M₀ : Type u_1} {N₀ : Type u_2} [MulZeroOneClass M₀] [MulZeroOneClass N₀] :
      MulZeroOneClass (M₀ × N₀)
      Equations
        instance Prod.instMonoidWithZero {M₀ : Type u_1} {N₀ : Type u_2} [MonoidWithZero M₀] [MonoidWithZero N₀] :
        MonoidWithZero (M₀ × N₀)
        Equations
          instance Prod.instCommMonoidWithZero {M₀ : Type u_1} {N₀ : Type u_2} [CommMonoidWithZero M₀] [CommMonoidWithZero N₀] :
          Equations

            Multiplication and division as homomorphisms #

            def mulMonoidWithZeroHom {M₀ : Type u_1} [CommMonoidWithZero M₀] :
            M₀ × M₀ →*₀ M₀

            Multiplication as a multiplicative homomorphism with zero.

            Equations
              Instances For
                @[simp]
                theorem mulMonoidWithZeroHom_apply {M₀ : Type u_1} [CommMonoidWithZero M₀] (a✝ : M₀ × M₀) :
                def divMonoidWithZeroHom {M₀ : Type u_1} [CommGroupWithZero M₀] :
                M₀ × M₀ →*₀ M₀

                Division as a multiplicative homomorphism with zero.

                Equations
                  Instances For
                    @[simp]
                    theorem divMonoidWithZeroHom_apply {M₀ : Type u_1} [CommGroupWithZero M₀] (a✝ : M₀ × M₀) :