Documentation

Mathlib.Algebra.Group.Nat.Hom

Extensionality of monoid homs from #

theorem ext_nat' {A : Type u_2} {F : Type u_4} [FunLike F A] [AddZeroClass A] [AddMonoidHomClass F A] (f g : F) (h : f 1 = g 1) :
f = g
theorem AddMonoidHom.ext_nat {A : Type u_2} [AddZeroClass A] {f g : →+ A} :
f 1 = g 1f = g
theorem AddMonoidHom.ext_nat_iff {A : Type u_2} [AddZeroClass A] {f g : →+ A} :
f = g f 1 = g 1
def multiplesHom (M : Type u_1) [AddMonoid M] :
M ( →+ M)

Additive homomorphisms from are defined by the image of 1.

Equations
    Instances For
      @[simp]
      theorem multiplesHom_apply {M : Type u_1} [AddMonoid M] (x : M) (n : ) :
      ((multiplesHom M) x) n = n x
      @[simp]
      theorem multiplesHom_symm_apply {M : Type u_1} [AddMonoid M] (f : →+ M) :
      (multiplesHom M).symm f = f 1
      theorem AddMonoidHom.apply_nat {M : Type u_1} [AddMonoid M] (f : →+ M) (n : ) :
      f n = n f 1
      def powersHom (M : Type u_1) [Monoid M] :

      Monoid homomorphisms from Multiplicative are defined by the image of Multiplicative.ofAdd 1.

      Equations
        Instances For
          @[simp]
          theorem powersHom_apply {M : Type u_1} [Monoid M] (x : M) (n : Multiplicative ) :
          theorem MonoidHom.ext_mnat {M : Type u_1} [Monoid M] f g : Multiplicative →* M (h : f (Multiplicative.ofAdd 1) = g (Multiplicative.ofAdd 1)) :
          f = g
          def multiplesAddHom (M : Type u_1) [AddCommMonoid M] :
          M ≃+ ( →+ M)

          If M is commutative, multiplesHom is an additive equivalence.

          Equations
            Instances For
              @[simp]
              theorem multiplesAddHom_apply {M : Type u_1} [AddCommMonoid M] (x : M) (n : ) :
              ((multiplesAddHom M) x) n = n x
              @[simp]
              theorem multiplesAddHom_symm_apply {M : Type u_1} [AddCommMonoid M] (f : →+ M) :

              If M is commutative, powersHom is a multiplicative equivalence.

              Equations
                Instances For
                  @[simp]
                  theorem powersMulHom_apply {M : Type u_1} [CommMonoid M] (x : M) (n : Multiplicative ) :