Documentation

Lean.Elab.PreDefinition.Structural.BRecOn

partial def Lean.Elab.Structural.searchPProd {α : Type} (e F : Expr) (k : ExprExprMetaM α) :

Calculates the .brecOn motive corresponding to one structural recursive function. The value is the function with (only) the fixed parameters moved into the context.

Equations
    Instances For
      def Lean.Elab.Structural.mkBRecOnF (recArgInfos : Array RecArgInfo) (positions : Positions) (recArgInfo : RecArgInfo) (value FType : Expr) :

      Calculates the .brecOn functional argument corresponding to one structural recursive function. The value is the function with (only) the fixed parameters moved into the context, The FType is the expected type of the argument. The recArgInfos is used to transform the body of the function to replace recursive calls with uses of the below induction hypothesis.

      Equations
        Instances For
          def Lean.Elab.Structural.mkBRecOnConst (recArgInfos : Array RecArgInfo) (positions : Positions) (motives : Array Expr) :
          MetaM (NatExpr)

          Given the motives, figures out whether to use .brecOn or .binductionOn, pass the right universe levels, the parameters, and the motives. It was already checked earlier in checkCodomainsLevel that the functions live in the same universe.

          Equations
            Instances For
              def Lean.Elab.Structural.inferBRecOnFTypes (recArgInfos : Array RecArgInfo) (positions : Positions) (brecOnConst : NatExpr) :

              Given the recArgInfos and the motives, infer the types of the F arguments to the .brecOn combinators. This assumes that all .brecOn functions of a mutual inductive have the same structure.

              It also undoes the permutation and packing done by packMotives

              Equations
                Instances For
                  def Lean.Elab.Structural.mkBrecOnApp (positions : Positions) (fnIdx : Nat) (brecOnConst : NatExpr) (FArgs : Array Expr) (recArgInfo : RecArgInfo) (value : Expr) :

                  Completes the .brecOn for the given function. The value is the function with (only) the fixed parameters moved into the context.

                  Equations
                    Instances For